×

On the mass of static metrics with positive cosmological constant. I. (English) Zbl 1391.83037

Summary: In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild-de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.

MSC:

83C40 Gravitational energy and conservation laws; groups of motions
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
53Z05 Applications of differential geometry to physics

References:

[1] Abbott, L. F.; Deser, S., Stability of gravity with a cosmological constant, Nucl. Phys. B, 195, 76-96, (1982) · Zbl 0900.53033 · doi:10.1016/0550-3213(82)90049-9
[2] Agostiniani, V.; Mazzieri, L., On the geometry of the level sets of bounded static potentials, Commun. Math. Phys., 355, 261-301, (2017) · Zbl 1375.53090 · doi:10.1007/s00220-017-2922-x
[3] Ambrozio, L., On static three-manifolds with positive scalar curvature, J. Differ. Geom., 107, 1-45, (2017) · Zbl 1385.53020 · doi:10.4310/jdg/1505268028
[4] Anderson, M. T.; Chruściel, P. T.; Delay, E., Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant, J. High Energy Phys., JHEP10(2002), 063, (2002) · doi:10.1088/1126-6708/2002/10/063
[5] Anderson, M. T.; Chruściel, P. T.; Delay, E., Non-trivial, static, geodesically complete space-times with a negative cosmological constant. II. \( \newcommand{\g}{g} n⩾5\), AdS/CFT Correspondence: Einstein Metrics, their Conformal Boundaries, 165-204, (2005), Zürich: European Mathematical Society, Zürich · Zbl 1075.83031
[6] Anninos, D., de Sitter musings, Int. J. Mod. Phys. A, 27, 1230013, (2012) · Zbl 1247.83068 · doi:10.1142/S0217751X1230013X
[7] Arnowitt, R.; Deser, S.; Misner, C. W., The dynamics of general relativity, Gen. Relativ. Grav., 40, 1997-2027, (2008) · Zbl 1152.83320 · doi:10.1007/s10714-008-0661-1
[8] Ashtekar, A.; Bonga, B.; Kesavan, A., Asymptotics with a positive cosmological constant: I. Basic framework, Class. Quantum Grav., 32, (2014) · Zbl 1307.83011 · doi:10.1088/0264-9381/32/2/025004
[9] Balasubramanian, V.; De Boer, J.; Minic, D., Mass, entropy, and holography in asymptotically de Sitter spaces, Phys. Rev. D, 65, (2002) · doi:10.1103/physrevd.65.123508
[10] Bardeen, J. M.; Carter, B.; Hawking, S. W., The four laws of black hole mechanics, Commun. Math. Phys., 31, 161-170, (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[11] Bartnik, R., The mass of an asymptotically flat manifold, Commun. Pure Appl. Math., 39, 661-693, (1986) · Zbl 0598.53045 · doi:10.1002/cpa.3160390505
[12] Beig, R., 1978/79 Arnowitt–Deser–Misner energy and \(g_{00}\), Phys. Lett. A, 69, 153-155 · doi:10.1016/0375-9601(78)90198-6
[13] Beig, R.; Simon, W., On the uniqueness of static perfect-fluid solutions in general relativity, Commun. Math. Phys., 144, 373-390, (1992) · Zbl 0760.53043 · doi:10.1007/BF02101098
[14] Böhm, C., Non-compact cohomogeneity one Einstein manifolds, Bull. Soc. Math. France, 127, 135-177, (1999) · Zbl 0935.53021 · doi:10.24033/bsmf.2345
[15] Borghini, S.; Mazzieri, L., Monotonicity formulas for static metrics with non-zero cosmological constant, (2016)
[16] Borghini, S.; Mazzieri, L., On the mass of static metrics with positive cosmological constant-II, (2017)
[17] Boucher, W.; Gibbons, G. W.; Horowitz, G. T., Uniqueness theorem for anti-de Sitter spacetime, Phys. Rev. D, 30, 2447-2451, (1984) · doi:10.1103/physrevd.30.2447
[18] Bousso, R., Adventures in de Sitter space, (2002) · Zbl 1186.83079
[19] Bousso, R.; Hawking, S. W., Pair creation of black holes during inflation, Phys. Rev. D, 54, 6312-6322, (1996) · doi:10.1103/physrevd.54.6312
[20] Brendle, S.; Marques, F. C.; Neves, A., Deformations of the hemisphere that increase scalar curvature, Inventiones Math., 185, 175-197, (2011) · Zbl 1227.53048 · doi:10.1007/s00222-010-0305-4
[21] Cardoso, V.; Dias Ó, J.; Lemos, J. P., Nariai, Bertotti–Robinson, and anti-Nariai solutions in higher dimensions, Phys. Rev. D, 70, (2004) · doi:10.1103/physrevd.70.024002
[22] Case, J. S., The nonexistence of quasi-Einstein metrics, Pac. J. Math., 248, 277-284, (2010) · Zbl 1204.53032 · doi:10.2140/pjm.2010.248.277
[23] Cederbaum, C., The Newtonian limit of geometrostatics, (2012)
[24] Chruściel, P. T., Remarks on rigidity of the de Sitter metric
[25] Chruściel, P. T., On analyticity of static vacuum metrics at non-degenerate horizons, Acta Phys. Pol. B, 36, 17-26, (2005) · Zbl 1066.83007
[26] Chruściel, P. T.; Herzlich, M., The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math., 212, 231-264, (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[27] Chruściel, P. T.; Jezierski, J.; Kijowski, J., Hamiltonian mass of asymptotically Schwarzschild–de Sitter space-times, Phys. Rev. D, 87, (2013) · doi:10.1103/physrevd.87.124015
[28] Chruściel, P. T.; Simon, W., Towards the classification of static vacuum spacetimes with negative cosmological constant, J. Math. Phys., 42, 1779-1817, (2001) · Zbl 1009.83009 · doi:10.1063/1.1340869
[29] Foote, R. L., Regularity of the distance function, 92, 153-155, (1984) · Zbl 0528.53005
[30] Gibbons, G. W.; Hartnoll, S. A.; Pope, C. N., Bohm and Einstein–Sasaki metrics, black holes, and cosmological event horizons, Phys. Rev. D, 67, (2003) · doi:10.1103/physrevd.67.084024
[31] Ginsparg, P.; Perry, M. J., Semiclassical perdurance of de Sitter space, Nucl. Phys. B, 222, 245-268, (1983) · doi:10.1016/0550-3213(83)90636-3
[32] Graham, C. R., Volume and area renormalizations for conformally compact Einstein metrics, vol 63, (2000) · Zbl 0984.53020
[33] Guilbault, C. R., Ends, shapes, and boundaries in manifold topology, geometric group theory, Topology and Geometric Group Theory, 45-125, (2016), Cham: Springer, Cham · Zbl 1434.57019
[34] Heusler, M., Black Hole Uniqueness Theorems, (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0945.83001
[35] Hijazi, O.; Montiel, S., Uniqueness of the AdS spacetime among static vacua with prescribed null infinity, Adv. Theor. Math. Phys., 18, 177-203, (2014) · Zbl 1309.83014 · doi:10.4310/ATMP.2014.v18.n1.a4
[36] Hijazi, O.; Montiel, S.; Raulot, S., Uniqueness of the de Sitter spacetime among static vacua with positive cosmological constant, Ann. Glob. Anal. Geom., 47, 167-178, (2015) · Zbl 1318.53054 · doi:10.1007/s10455-014-9441-1
[37] Huisken, G.; Ilmanen, T., The inverse mean curvature flow and the Riemannian Penrose inequality, J. Differ. Geom., 59, 353-437, (2001) · Zbl 1055.53052 · doi:10.4310/jdg/1090349447
[38] Kastor, D.; Traschen, J., A positive energy theorem for asymptotically de Sitter spacetimes, Class. Quantum Grav., 19, 5901, (2002) · Zbl 1019.83007 · doi:10.1088/0264-9381/19/23/302
[39] Krantz, S. G.; Parks, H. R., Distance to \(C^{k}\) hypersurfaces, J. Differ. Equ., 40, 116-120, (1981) · Zbl 0431.57009 · doi:10.1016/0022-0396(81)90013-9
[40] Krantz, S. G.; Parks, H. R., A primer of real analytic functions, Birkhäuser Advanced Texts: Basler Lehrbücher, (2002), Boston, MA: Birkhäuser, Boston, MA · Zbl 1015.26030
[41] Kurdyka, K.; Parusiński, A., \(\textbf{w}_f\)-stratification of subanalytic functions and the Łojasiewicz inequality, C. R. Acad. Sci., Paris I, 318, 129-133, (1994) · Zbl 0799.32007
[42] Lee, D. A.; Neves, A., The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass, Commun. Math. Phys., 339, 327-352, (2015) · Zbl 1322.53038 · doi:10.1007/s00220-015-2421-x
[43] Łojasiewicz, S., Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles (Paris, 1962), 87-89, (1963), Paris: Éditions du Centre National de la Recherche Scientifique, Paris · Zbl 0234.57007
[44] Łojasiewicz, S., Introduction to Complex Analytic Geometry, (1991), Basel: Birkhäuser, Basel · Zbl 0747.32001
[45] Luo, M.; Xie, N.; Zhang, X., Positive mass theorems for asymptotically de Sitter spacetimes, Nucl. Phys. B, 825, 98-118, (2010) · Zbl 1196.83017 · doi:10.1016/j.nuclphysb.2009.09.017
[46] Mazzeo, R., The Hodge cohomology of a conformally compact metric, J. Differ. Geom., 28, 309-339, (1988) · Zbl 0656.53042 · doi:10.4310/jdg/1214442281
[47] Miao, P., Positive mass theorem on manifolds admitting corners along a hypersurface, Adv. Theor. Math. Phys., 6, 1163-1182, (2002) · doi:10.4310/ATMP.2002.v6.n6.a4
[48] Obata, M., Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan, 14, 333-340, (1962) · Zbl 0115.39302 · doi:10.2969/jmsj/01430333
[49] Pappas, T.; Kanti, P., Schwarzschild–de Sitter spacetime: the role of temperature in the emission of Hawking radiation, Phys. Lett. B, 775, 140-146, (2017) · doi:10.1016/j.physletb.2017.10.058
[50] Penrose, R., Asymptotic properties of fields and space-times, Phys. Rev. Lett., 10, 66-68, (1963) · doi:10.1103/PhysRevLett.10.66
[51] Qing, J., On the uniqueness of AdS space-time in higher dimensions, Ann. Henri Poincaré, 5, 245-260, (2004) · Zbl 1061.83053 · doi:10.1007/s00023-004-0168-6
[52] Schoen, R.; Yau, S. T., On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 45-76, (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[53] Schoen, R.; Yau, S. T., Positive scalar curvature and minimal hypersurface singularities, (2017)
[54] Shen, Y., A note on Fischer–Marsden’s conjecture, 125, 901-905, (1997) · Zbl 0867.53035 · doi:10.1090/s0002-9939-97-03635-6
[55] Shiromizu, T., Positivity of gravitational mass in asymptotically de Sitter space-times, Phys. Rev. D, 49, 5026, (1994) · doi:10.1103/physrevd.49.5026
[56] Shiromizu, T.; Ida, D.; Torii, T., Gravitational energy, dS/CFT correspondence and cosmic no-hair, J. High Energy Phys., JHEP11(2001), 010, (2001) · doi:10.1088/1126-6708/2001/11/010
[57] Souček, J.; Souček, V., Morse–Sard theorem for real-analytic functions, Comment. Math. Univ. Carolinae, 13, 45-51, (1972) · Zbl 0235.26012
[58] Wald, R. M., General Relativity, (1984), Chicago, IL: University of Chicago Press, Chicago, IL · Zbl 0549.53001
[59] Wang, X., The mass of asymptotically hyperbolic manifolds, J. Differ. Geom., 57, 273-299, (2001) · Zbl 1037.53017 · doi:10.4310/jdg/1090348112
[60] Wang, X., On the uniqueness of the AdS spacetime, Acta Math. Sin., 21, 917-922, (2005) · Zbl 1082.53040 · doi:10.1007/s10114-004-0489-x
[61] Witten, E., Quantum gravity in de Sitter space, (2001)
[62] Zhang, X., A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I, Commun. Math. Phys., 249, 529-548, (2004) · Zbl 1073.83019 · doi:10.1007/s00220-004-1056-0
[63] zum Hagen, H. M., On the analyticity of static vacuum solutions of Einstein’s equations, 67, 415-421, (1970) · Zbl 0191.52505 · doi:10.1017/s0305004100045710
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.