×

Mass rigidity for hyperbolic manifolds. (English) Zbl 1440.81066

Summary: We prove the rigidity of the positive mass theorem for asymptotically hyperbolic manifolds. Namely, if the mass equality \(p_0=\sqrt{p_1^2+\cdots + p_n^2}\) holds, then the manifold is isometric to hyperbolic space. The result was previously proven for spin manifolds [L. Andersson and M. Dahl, Ann. Global Anal. Geom. 16, No. 1, 1–27 (1998; Zbl 0946.53021); P. Chruściel and M. Herzlich, Pac. J. Math. 212, No. 2, 231–264 (2004; Zbl 1056.53025); M. Min-Oo, Math. Ann. 285, No. 4, 527–539 (1989; Zbl 0686.53038); X. Wang, J. Differ. Geom. 57, No. 2, 273–299 (2001; Zbl 1037.53017)] or under special asymptotics [L. Andersson et al., Ann. Henri Poincaré 9, No. 1, 1–33 (2008; Zbl 1134.81037)].

MSC:

81T20 Quantum field theory on curved space or space-time backgrounds
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C20 Global Riemannian geometry, including pinching
53C27 Spin and Spin\({}^c\) geometry
57K32 Hyperbolic 3-manifolds
83C47 Methods of quantum field theory in general relativity and gravitational theory

References:

[1] Andersson, L.; Cai, M.; Galloway, GJ, Rigidity and positivity of mass for asymptotically hyperbolic manifolds, Ann. Henri Poincaré, 9, 1, 1-33 (2008) · Zbl 1134.81037 · doi:10.1007/s00023-007-0348-2
[2] Andersson, L.; Dahl, M., Scalar curvature rigidity for asymptotically locally hyperbolic manifolds, Ann. Glob. Anal. Geom., 16, 1, 1-27 (1998) · Zbl 0946.53021 · doi:10.1023/A:1006547905892
[3] Bartnik, R., Phase space for the Einstein equations, Commun. Anal. Geom., 13, 5, 845-885 (2005) · Zbl 1123.83006 · doi:10.4310/CAG.2005.v13.n5.a1
[4] Chruściel, PT; Delay, E., Exotic hyperbolic gluings, J. Differ. Geom., 108, 2, 243-293 (2018) · Zbl 1385.53062 · doi:10.4310/jdg/1518490818
[5] Chruściel, P.T., Delay, E.: The hyperbolic positive energy theorem. arXiv:1901.05263 [math.DG] (2019)
[6] Chruściel, PT; Herzlich, M., The mass of asymptotically hyperbolic Riemannian manifolds, Pac. J. Math., 212, 2, 231-264 (2003) · Zbl 1056.53025 · doi:10.2140/pjm.2003.212.231
[7] Delay, E., Analyse précisée d’équations semi-linéaires elliptiques sur l’espace hyperbolique et application à la courbure scalaire conforme, Bull. Soc. Math. France, 125, 3, 345-381 (1997) · Zbl 0939.53026 · doi:10.24033/bsmf.2311
[8] Delay, E., Fougeirol, J.: Hilbert Manifold Structure for Asymptotically Hyperbolic Relativistic Initial Data. arXiv:1607.05616 (2016) · Zbl 1466.83010
[9] Fischer, AE; Marsden, JE, Deformations of the scalar curvature, Duke Math. J., 42, 3, 519-547 (1975) · Zbl 0336.53032 · doi:10.1215/S0012-7094-75-04249-0
[10] Folland, GB, Introduction to partial differential equations (1995), Princeton: Princeton University Press, Princeton · Zbl 0841.35001
[11] Graham, CR; Lee, JM, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., 87, 2, 186-225 (1991) · Zbl 0765.53034 · doi:10.1016/0001-8708(91)90071-E
[12] Herzlich, M.: Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and their Conformal Boundaries, IRMA Lect. Math. Theor. Phys., vol. 8, Eur. Math. Soc., Zürich, pp. 103-121 (2005) · Zbl 1082.53034
[13] Herzlich, M., Computing asymptotic invariants with the Ricci tensor on asymptotically flat and asymptotically hyperbolic manifolds, Ann. Henri Poincaré, 17, 12, 3605-3617 (2016) · Zbl 1360.51011 · doi:10.1007/s00023-016-0494-5
[14] Huang, L-H; Lee, DA, Equality in the spacetime positive mass theorem, Commun. Math. Phys. (2019) · Zbl 1440.53078 · doi:10.1007/s00220-019-03619-w
[15] Kanai, M., On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math., 6, 1, 143-151 (1983) · Zbl 0534.53037 · doi:10.3836/tjm/1270214332
[16] Lee, JM, The spectrum of an asymptotically hyperbolic Einstein manifold, Commun. Anal. Geom., 3, 1-2, 253-271 (1995) · Zbl 0934.58029 · doi:10.4310/CAG.1995.v3.n2.a2
[17] Lee, JM, Fredholm operators and Einstein metrics on conformally compact manifolds, Mem. Am. Math. Soc, 183, 864, vi+83 (2006) · Zbl 1112.53002
[18] Min-Oo, M., Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann., 285, 4, 527-539 (1989) · Zbl 0686.53038 · doi:10.1007/BF01452046
[19] Qing, J., On the rigidity for conformally compact Einstein manifolds, Int. Math. Res. Not., 21, 1141-1153 (2003) · Zbl 1042.53031 · doi:10.1155/S1073792803209193
[20] Qing, J., On the uniqueness of AdS space-time in higher dimensions, Ann. Henri Poincaré, 5, 2, 245-260 (2004) · Zbl 1061.83053 · doi:10.1007/s00023-004-0168-6
[21] Schoen, R.; Yau, S-T, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., 65, 1, 45-76 (1979) · Zbl 0405.53045 · doi:10.1007/BF01940959
[22] Tashiro, Y., Complete Riemannian manifolds and some vector fields, Trans. Am. Math. Soc., 117, 251-275 (1965) · Zbl 0136.17701 · doi:10.1090/S0002-9947-1965-0174022-6
[23] Wang, X., The mass of asymptotically hyperbolic manifolds, J. Differ. Geom., 57, 2, 273-299 (2001) · Zbl 1037.53017 · doi:10.4310/jdg/1090348112
[24] Wang, X., On the uniqueness of the AdS spacetime, Acta Math. Sin. (Engl. Ser.), 21, 4, 917-922 (2005) · Zbl 1082.53040 · doi:10.1007/s10114-004-0489-x
[25] Witten, E., A new proof of the positive energy theorem, Commun. Math. Phys., 80, 3, 381-402 (1981) · Zbl 1051.83532 · doi:10.1007/BF01208277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.