×

A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds. (English) Zbl 1218.53042

Summary: We establish new existence and non-existence results for positive solutions of the Einstein-scalar field Lichnerowicz equation on compact manifolds. This equation arises from the Hamiltonian constraint equation for the Einstein-scalar field system in general relativity. Our analysis introduces variational techniques, in the form of the mountain pass lemma, to the analysis of the Hamiltonian constraint equation, which has been previously studied by other methods.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

References:

[1] Ambrosetti A. and Rabinowitz P. (1973). Dual variational methods in critical point theory and applications. J. Funct. Anal. 14: 349–381 · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] Aubin, T.: Nonlinear Analysis on manifolds. Monge-Ampre Equations. Grund. der Math. Wissenschaften, 252. New York:Springer-Verlag, 1982 · Zbl 0512.53044
[3] Bartnik, R., Isenberg, J.: The constraint equations. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields edited by P.T. Chruściel, H. Friedrich, Basel:Birkhäuser, 2004, pp. 1–39 · Zbl 1073.83009
[4] Brendle, S.: Blow-up phenomena for the Yamabe PDE in high dimensions. To appear J. Amer. Math. Soc., doi: 10.1090/S0894-0347-07-00575-9 , 2007
[5] Choquet-Bruhat Y. and Geroch R. (1969). Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14: 329–335 · Zbl 0182.59901 · doi:10.1007/BF01645389
[6] Choquet-Bruhat Y., Isenberg J. and Pollack D. (2006). The Einstein–scalar field constraints on asymptotically Euclidean manifolds. Chin. Ann. Math. ser. B 27(1): 31–52 · Zbl 1112.83008 · doi:10.1007/s11401-005-0280-z
[7] Choquet-Bruhat Y., Isenberg J. and Pollack D. (2007). The constraint equations for the Einstein–scalar field system on compact manifolds. Class. Quantum Grav. 24: 809–828 · Zbl 1111.83002 · doi:10.1088/0264-9381/24/4/004
[8] Choquet-Bruhat, Y., York, J.: The Cauchy Problem. In: General Relativity and Gravitation - The Einstein Centenary, edited by A. Held New York:Plenum, 1980, pp. 99–172
[9] Druet O. and Hebey E. (2004). Blow-up examples for second order elliptic PDEs of critical Sobolev growth. Trans. Amer. Math. Soc. 357: 1915–1929 · Zbl 1061.58017 · doi:10.1090/S0002-9947-04-03681-5
[10] Foures-Bruhat Y. (1952). Théorème d’existence pour certains systèmes d’équations aux dérivées partialles non linéaires. Acta. Math. 88: 141–225 · Zbl 0049.19201 · doi:10.1007/BF02392131
[11] Isenberg J. (1995). Constant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Grav. 12: 2249–2274 · Zbl 0840.53056 · doi:10.1088/0264-9381/12/9/013
[12] Isenberg J., Maxwell D. and Pollack D. (2005). A gluing constructions for non-vacuum solutions of the Einstein constraint equations. Adv. Theor. Math. Phys. 9(1): 129–172 · Zbl 1101.83005
[13] Ilias S. (1983). Constantes explicites pour les inégalités de Sobolev sur les variétés riemanniennes compactes. Ann. Inst. Fourier 33: 151–165 · Zbl 0528.53040
[14] Kazdan J.L. and Warner F.W. (1975). Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10: 113–134 · Zbl 0296.53037
[15] Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics 65, Providance RI: Amer. Math. Soc., 1986 · Zbl 0609.58002
[16] Rendall A. (2004). Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound. Class. Quantum Grav. 21: 2445–2454 · Zbl 1054.83042 · doi:10.1088/0264-9381/21/9/018
[17] Rendall, A.: Mathematical properties of cosmological models with accelerated expansion. In: Analytical and numerical approaches to mathematical relativity, Lecture Notes in Phys. 692, Berlin:Springer, 2006, pp. 141–155 · Zbl 1096.83079
[18] Rendall A. (2005). Intermediate inflation and the slow-roll approximation. Class. Quantum Grav. 22: 1655–1666 · Zbl 1068.83020 · doi:10.1088/0264-9381/22/9/013
[19] Sahni, V.: Dark matter and dark energy. In: Physics of the Early Universe, edited by E. Papantonopoulos Berlin:Springer 2005 · Zbl 1069.83515
[20] Trudinger N.S. (1968). Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22: 265–274 · Zbl 0159.23801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.