×

Generalized fractional differential systems with Stieltjes boundary conditions. (English) Zbl 1514.34022

The existence and uniqueness of solution for a system of nonlinear generalized fractional differential equations of different orders on the bounded interval \([0,T]\) subject to a nonlocal boundary condition containing Riemann-Stieltjes and generalized fractional derivatives integral operators are considered in this work. Two fixed point theorems are used by the authors. The Leray-Schauder alternative is used to prove existence of solution while the Banach contraction mapping theorem is used to prove the uniqueness of the solution for the boundary value problem.
The authors define two Banach spaces \(X\) and \(Y\) and an operator \(\mathcal{F}: X \times Y \to X \times Y\) as \(\mathcal{F}(u,v)(t)(t)=(\mathcal{F}_1(u,v)(t),\mathcal{F}_2(u,v)(t))\).
Two theorems are used by the authors to prove the main results. Theorem 1 considers the uniqueness of solution while Theorem 2 considers the existence of solution. In Theorem 1, the authors use two functions of bounded variations \(H_1, H_2:[0,T] \times \mathbb{R} \to \mathbb{R}\), two continuous functions \(f, g \in C([0,T] \times \mathbb{R}^3,\mathbb{R})\) and assume the existence of two positive constants \(L_f\) and \(L_g\) whose values are expected to be less then \(\frac{1}{2}\) so that \(L_f + L_g <1\). The operator \(\mathcal{F}\), is shown to be a contraction operator. Hence, by the contraction mapping theorem, \(\mathcal{F}\) has a unique fixed point. This implies a unique solution of the system of nonlinear generalized fractional differential equations exists on \([0,T]\).
In Theorem 2, the authors address the issue of existence of solutions using the Leray-Schauder alternative. The conditions for existence of solution are stated and proved. The proof is done in three steps. Firstly, the operator \(\mathcal{F}\) is shown to be uniformly bounded, then completely continuous and finally, shown to be bounded. The conclusion of existence of at least one fixed point which corresponds to at least one solution follows from the Leray-Schauder alternative.
The study concludes with two examples to demonstrate the results that have been obtained in the study.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Abbas, MI; Fečkan, M., Michal Feckan, Investigation of an implicit Hadamard fractional differential equation with Riemann-Stieltjes integral boundary condition, Math. Slovaca, 72, 4, 925-934 (2022) · Zbl 1537.34002 · doi:10.1515/ms-2022-0063
[2] Ahmad, B.; Alghanmi, M.; Ntouyas, SK; Alsaedi, A., Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions, Appl. Math. Lett., 84, 111-117 (2018) · Zbl 1477.34004 · doi:10.1016/j.aml.2018.04.024
[3] Ahmad, B.; Ntouyas, SK, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266, 615-622 (2015) · Zbl 1410.34008
[4] Ahmad, B.; Ntouyas, S.; Alsaedi, A., On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Solitons Fractals, 83, 234-241 (2016) · Zbl 1355.34012 · doi:10.1016/j.chaos.2015.12.014
[5] Ahmad, B.; Luca, R., Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Frac. Calc. Appl. Anal., 21, 2, 423-441 (2018) · Zbl 1401.34006 · doi:10.1515/fca-2018-0024
[6] Ahmad, B.; Alghanmi, M.; Alsaedi, A., Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions, Rocky Mountain J. Math., 50, 6, 1901-1922 (2020) · Zbl 1462.34009 · doi:10.1216/rmj.2020.50.1901
[7] Alruwaily, Y.; Ahmad, B.; Ntouyas, SK; Alzaidi, ASM, Existence Results for Coupled Nonlinear Sequential Fractional Differential Equations with Coupled Riemann-Stieltjes Integro-Multipoint Boundary Conditions, Fractal Fract., 6, 123 (2022) · doi:10.3390/fractalfract6020123
[8] Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Chaos in a fractional order Duffing system, In:Proceedings of the 1997 European conference on circuit theory and design(ECCTD97), Budapest, Hungary, 30 August-3. Budapest: Hungary: Technical University of Budapest (1997) 1259-1262
[9] Asawasamrit, S.; Thadang, Y.; Ntouyas, SK; Tariboon, J., Non-Instantaneous Impulsive Boundary Value Problems Containing Caputo Fractional Derivative of a Function with Respect to Another Function and Riemann-Stieltjes Fractional Integral Boundary Conditions, Axioms, 10, 3, 130 (2021) · doi:10.3390/axioms10030130
[10] Belmor, S.; Ravichandran, C.; Jarad, F., Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah University Sci, 14, 1, 114-123 (2020) · doi:10.1080/16583655.2019.1709265
[11] Belmor, S.; Jarad, F.; Abdeljawad, T.; Kilinç, G., A study of boundary value problem for generalized fractional differential in- clusion via endpoint theory for weak contractions, Advances in Difference Equations, 2020, 1, 1-11 (2020) · Zbl 1485.34029 · doi:10.1186/s13662-020-02811-w
[12] Belmor, S.; Jarad, F.; Abdeljawad, T., On Caputo-, Hadamard type coupled systems of nonconvex fractional differential inclusions, Adv. Diff. Equ., 2021, 1, 1-12 (2021) · Zbl 1494.34018 · doi:10.1186/s13662-021-03534-2
[13] Belmor, S.; Jarad, F.; Abdeljawad, T.; Alqudah, MA, On fractional differential inclusion problems involving fractional order derivative with respect to another function, Fractals, 28, 8, 2040002 (2020) · Zbl 1487.34009 · doi:10.1142/S0218348X20400022
[14] Faieghi, M.; Kuntanapreeda, S.; Delavari, H.; Baleanu, D., LMI-based stabilization of a class of fractional-order chaotic systems, Nonlinear Dyn., 72, 301-309 (2013) · Zbl 1268.93121 · doi:10.1007/s11071-012-0714-6
[15] Ge, ZM; Jhuang, WR, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Solitons Fractals, 33, 270-289 (2007) · Zbl 1152.34355 · doi:10.1016/j.chaos.2005.12.040
[16] Ge, ZM; Ou, CY, Chaos synchronization of fractional order modified Duffing systems with parameters excited by a chaotic signal, Chaos Solitons Fractals, 35, 705-717 (2008) · doi:10.1016/j.chaos.2006.05.101
[17] Granas, A.; Dugundji, J., Fixed Point Theory (2003), New York: Springer-Verlag, New York · Zbl 1025.47002 · doi:10.1007/978-0-387-21593-8
[18] Grigorenko, I.; Grigorenko, E., Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003) · doi:10.1103/PhysRevLett.91.034101
[19] Hartley, TT; Lorenzo, CF; Killory, QH, Chaos in a fractional order Chua’s system, IEEE Trans. CAS-I, 42, 485-490 (1995) · doi:10.1109/81.404062
[20] Henderson, J.; Luca, R.; Tudorache, A., On a system of fractional differential equations with coupled integral boundary conditions, Fract. Calc. Appl. Anal., 18, 2, 361-386 (2015) · Zbl 1315.34012 · doi:10.1515/fca-2015-0024
[21] Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002
[22] Jiang, J.; Liu, L.; Wu, Y., Positive solutions to singular fractional differential system with coupled boundary conditions, Comm. Nonlinear Sc. Num. Sim., 18, 11, 3061-3074 (2013) · Zbl 1329.34010 · doi:10.1016/j.cnsns.2013.04.009
[23] Jiao, Z.; Chen, YQ; Podlubny, I., Distributed-order Dyn. Syst. (2012), New York: Springer, New York · Zbl 1401.93005 · doi:10.1007/978-1-4471-2852-6
[24] Katugampola, UN, New approach to a generalized fractional integral, Appl. Math. Comput., 218, 860-865 (2015) · Zbl 1231.26008
[25] Katugampola, UN, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6, 1-15 (2014) · Zbl 1317.26008
[26] Kilbas, AA; Trujillo, JJ, Differential equations of fractional order: Methods, results and problems I, Appl. Anal., 78, 153-192 (2001) · Zbl 1031.34002 · doi:10.1080/00036810108840931
[27] Kilbas, AA; Trujillo, JJ, Differential equations of fractional order: Methods, results and problems II, Appl. Anal., 81, 435-493 (2002) · Zbl 1033.34007 · doi:10.1080/0003681021000022032
[28] Kusnezov, D.; Bulgac, A.; Dang, GD, Quantum Levy processes and fractional kinetics, Phys. Rev. Lett., 82, 1136-11399 (1999) · doi:10.1103/PhysRevLett.82.1136
[29] Lu, H.; Sun, S.; Yang, D.; Teng, H., Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl., 2013, 23 (2013) · Zbl 1296.34025 · doi:10.1186/1687-2770-2013-23
[30] Lupinska, B.; Odzijewicz, T., A Lyapunov-type inequality with the Katugampola fractional derivative, Math. Methods Appl. Sci., 41, 8985-8996 (2018) · Zbl 1407.34014 · doi:10.1002/mma.4782
[31] Metzler, R.; Klafter, J., The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[32] Ostoja-Starzewski, M., Towards thermoelasticity of fractal media, J. Therm. Stress, 30, 889-896 (2007) · doi:10.1080/01495730701495618
[33] Povstenko, YZ, Fract thermoelast (2015), New York: Springer, New York · Zbl 1316.74001 · doi:10.1007/978-3-319-15335-3
[34] Redhwan, SS; Shaikh, SL; Abdo, MS, Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type, AIMS Math., 5, 4, 3714-3730 (2020) · Zbl 1484.34075 · doi:10.3934/math.2020240
[35] Redhwan, SS; Shaikh, SL; Abdo, MS; Shatanawi, W.; Abodayeh, K.; Almalahi, MA; Aljaaidi, T., Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Math., 7, 2, 1856-1872 (2021) · doi:10.3934/math.2022107
[36] S.S. Redhwan, S.L. Shaikh, M.S. Abdo, Theory of Nonlinear Caputo-Katugampola Fractional Differential Equations, arXiv:1911.08884 13 (2019)
[37] Redhwan, SS; Shaikh, SL; Abdo, MS, Caputo-Katugampola type implicit fractional differential equation with two-point anti-periodic boundary conditions, Results Nonlinear Anal., 5, 1, 12-28 (2022) · doi:10.53006/rna.974148
[38] Sokolov, IM; Klafter, J.; Blumen, A., Fractional kinetics, Phys. Today., 55, 48-54 (2002) · doi:10.1063/1.1535007
[39] Su, X., Boundary value problem for a coupled system of nonlinear fractional differential equations, Appl. Math. Lett., 22, 64-69 (2009) · Zbl 1163.34321 · doi:10.1016/j.aml.2008.03.001
[40] Sabatier, J.; Agarwal, OP; Ttenreiro Machado, JA, Advances in Fractional Calculus (2007), New York, Springer: Theoretical Developments and Applications in Physics and Engineering, New York, Springer · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[41] Ttenreiro Machado, JA, Discrete time fractional-order controllers, Frac. Cal. App. Anal., 4, 47-66 (2001) · Zbl 1111.93307
[42] Waheed, H.; Zada, A.; Rizwan, R.; Popa, IL, Hyers-Ulam Stability for a Coupled System of Fractional Differential Equation With \(p\)-Laplacian Operator Having Integral Boundary Conditions, Qual. Theory Dyn. Syst., 21, 3, Paper No. 92 (2022) · Zbl 1509.34015 · doi:10.1007/s12346-022-00624-8
[43] Zada, A.; Alam, M.; Riaz, U., Analysis of \(q\)-fractional implicit boundary value problems having stieltjes integral conditions, Math. Meth. Appl. Sci., 44, 6, 4381-4413 (2020) · Zbl 1471.39007 · doi:10.1002/mma.7038
[44] Zhang, F.; Chen, G.; Li, C.; Kurths, J., Chaos synchronization in fractional differential systems, Phil. Trans. R. Soc. A, 371, 20120155, 26 pages (2013) · Zbl 1342.34070 · doi:10.1098/rsta.2012.0155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.