×

On Caputo-Hadamard type coupled systems of nonconvex fractional differential inclusions. (English) Zbl 1494.34018


MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34A60 Ordinary differential inclusions

References:

[1] Benchohra, M.; Bouriah, S.; Nieto, J. J., Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative, Symmetry, 11, 5 (2019) · Zbl 1425.34008 · doi:10.3390/sym11050672
[2] Karapinar, E.; Abdeljawad, T.; Jarad, F., Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019, 1 (2019) · Zbl 1487.54065 · doi:10.1186/s13662-019-2354-3
[3] Haq, F.; Shah, K.; Al-Mdallal, Q. M.; Jarad, F., Application of a hybrid method for systems of fractional order partial differential equations arising in the model of the one-dimensional Keller-Segel equation, Eur. Phys. J. Plus, 134, 9 (2019) · doi:10.1140/epjp/i2019-12815-7
[4] Belmor, S.; Ravichandran, C.; Jarad, F., Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci. (2020) · doi:10.1080/16583655.2019.1709265
[5] Panda, S. K.; Ravichandran, C.; Hazarika, B., Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Solitons Fractals, 142 (2021) · doi:10.1016/j.chaos.2020.110390
[6] Panda, S. K.; Abdeljawad, T.; Ravichandran, C., Novel fixed point approach to Atangana-Baleanu fractional and \(L^p\)-Fredholm integral equations, Alex. Eng. J., 59, 4, 1959-1970 (2020) · doi:10.1016/j.aej.2019.12.027
[7] Panda, S. K., Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2, Results Phys., 19 (2020) · doi:10.1016/j.rinp.2020.103433
[8] Ardjouni, A.; Djoudi, A., Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differential equations with nonlocal conditions, Adv. Theory Nonlinear Anal. Appl., 3, 1, 46-52 (2019) · Zbl 1438.34017
[9] Ardjouni, A.; Djoudi, A., Existence and uniqueness of solutions for nonlinear hybrid implicit Caputo-Hadamard fractional differential equations, Results Nonlinear Anal., 2, 3, 136-142 (2019) · Zbl 1438.34017
[10] Karapinar, E.; Binh, H. D.; Luc, N. H.; Can, N. H., On continuity of the fractional derivative of the time-fractional semilinear pseudo-parabolic systems, Adv. Differ. Equ., 2021 (2021) · Zbl 1487.35407 · doi:10.1186/s13662-021-03232-z
[11] Butzer, P. L.; Kilbas, A. A.; Trujillo, J. J., Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269, 2, 387-400 (2002) · Zbl 1027.26004 · doi:10.1016/S0022-247X(02)00049-5
[12] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2010), Singapore: World Scientific, Singapore · Zbl 1210.26004 · doi:10.1142/p614
[13] Kilbas, A.; Trujillo, J., Hadamard-type integrals as G-transforms, Integral Transforms Spec. Funct., 14, 5, 413-427 (2003) · Zbl 1043.26004 · doi:10.1080/1065246031000074443
[14] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B. M.V., Matrix approach to discrete fractional calculus II: partial fractional differential equations, J. Comput. Phys., 228, 8, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[15] Jarad, F.; Abdeljawad, T.; Baleanu, D., Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012) · Zbl 1346.26002 · doi:10.1186/1687-1847-2012-142
[16] Gambo, Y. Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T., On Caputo modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2014, 1 (2014) · Zbl 1343.26002 · doi:10.1186/1687-1847-2014-10
[17] Mordukhovich, B. S.; Wang, L., Optimal control of neutral functional-differential inclusions, SIAM J. Control Optim., 43, 1, 111-136 (2004) · Zbl 1070.49016 · doi:10.1137/S0363012902420376
[18] Makarova, A. V., On solvability of stochastic differential inclusions with current velocities II, Glob. Stoch. Anal., 2, 1, 101-112 (2012) · Zbl 1296.58028
[19] Jafarian, M., Robust consensus of unicycles using ternary and hybrid controllers, Int. J. Robust Nonlinear Control, 27, 17, 4013-4034 (2017) · Zbl 1386.93007
[20] Ben-Naim, E.; Knight, J. B.; Nowak, E. R.; Jaeger, H. M.; Nagel, S. R., Slow relaxation in granular compaction, Phys. D: Nonlinear Phenom., 123, 1-4, 380-385 (1998)
[21] Sayed, E.; Ibrahim, A. G., Multivalued fractional differential equations of arbitrary orders, Appl. Math. Comput., 68, 15-25 (1995) · Zbl 0830.34012
[22] Yang, D.; Bai, C., Existence of solutions for anti-periodic fractional differential inclusions involving ψ-Riesz-Caputo fractional derivative, Mathematics, 7, 7 (2019) · Zbl 1453.34013 · doi:10.3390/math7070630
[23] Ahmad, B.; Ntouyas, S. K., Existence results for fractional differential inclusions arising from real estate asset securitization and HIV models, Adv. Differ. Equ., 2013, 1 (2013) · Zbl 1379.34024 · doi:10.1186/1687-1847-2013-216
[24] Graef, J. R.; Guerraiche, N.; Hamani, S., Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Math. Appl., 13, 27-40 (2018) · Zbl 1413.34258
[25] Ibrahim, A. G., Differential equations and inclusions of fractional order with impulse effects in Banach spaces, Bull. Malays. Math. Sci. Soc., 43, 1, 69-109 (2020) · Zbl 1436.34005 · doi:10.1007/s40840-018-0665-2
[26] Zhai, C.; Ren, J., A coupled system of fractional differential equations on the half-line, Bound. Value Probl., 2019, 1 (2019) · Zbl 1513.34045 · doi:10.1186/s13661-019-1230-0
[27] Alsaedi, A.; Baleanu, D.; Etemad, S.; Rezapour, S., On coupled systems of time-fractional differential problems by using a new fractional derivative, J. Funct. Spaces, 2016 (2016) · Zbl 1367.34006
[28] Ali, Z.; Zada, A.; Shah, K., On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations, Bull. Malays. Math. Sci. Soc., 42, 5, 2681-2699 (2019) · Zbl 1426.34005 · doi:10.1007/s40840-018-0625-x
[29] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A., Coupled systems of fractional differential inclusions with coupled boundary conditions, Electron. J. Differ. Equ., 2019 (2019) · Zbl 1458.35266 · doi:10.1186/s13662-019-2025-4
[30] Hu, S.; Papageorgiou, N., Handbook of Multivalued Analysis, Volume I: Theory (1997), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0887.47001 · doi:10.1007/978-1-4615-6359-4
[31] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[32] Kisielewicz, M., Differential Inclusions and Optimal Control (1991), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0731.49001
[33] Pathak, H. K.; Agarwal, R. P.; Cho, Y. J., Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions, J. Comput. Appl. Math., 283, 201-217 (2015) · Zbl 1310.54063 · doi:10.1016/j.cam.2014.12.019
[34] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric space, J. Math. Anal. Appl., 141, 177-188 (1989) · Zbl 0688.54028 · doi:10.1016/0022-247X(89)90214-X
[35] Du, W.-S., Some new results and generalizations in metric fixed point theory, Nonlinear Anal., 73, 1439-1446 (2010) · Zbl 1190.54030 · doi:10.1016/j.na.2010.05.007
[36] Du, W.-S., Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi’s condition in quasiordered metric spaces, Fixed Point Theory Appl., 2010 (2010) · Zbl 1194.54061 · doi:10.1155/2010/876372
[37] Reiche, S., Some fixed point problems, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 57, 194-198 (1974) · Zbl 0329.47019
[38] Castaing, C.; Valadier, M., Convex Analysis and Measurable Multifunctions (1977), Berlin: Springer, Berlin · Zbl 0346.46038 · doi:10.1007/BFb0087685
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.