×

Existence results for a nonlinear coupled system involving both Caputo and Riemann-Liouville generalized fractional derivatives and coupled integral boundary conditions. (English) Zbl 1462.34009

Fractional Calculus has been recently an interesting topic of research for many researchers due to its wide applications in modeling various phenomena in physics and engineering. Different definitions of fractional calculus have been introduced by mathematicians. The main reason behind this special interest about this topic is that many systems can be modeled with fractional derivatives better than usual derivatives where the fractional ones can provide a good explanation to the behavior of certain physical systems. This paper studies some interesting results concerning the existence and uniqueness of solutions for nonlinear coupled system, defined in the context of generalized Caputo and Riemann-Liouville fractional derivatives, with nonlocal coupled Riemann-Stieltjes integral (generalized form of Riemann integral) boundary conditions. For more fundamental information about fractional definitions and mixed-type fractional derivatives, we refer the reader for this interesting book: [R. Almeida et al., “The variable-order fractional calculus of variations”, Preprint, arXiv:1805.0720l]. With the help of Schaefer’s fixed-point theorem and Banach contraction mapping principle, the authors prove in this research paper the existence and uniqueness of solutions (see lemma 11, theorem 12, and theorem 15 in this research paper) for their proposed boundary value problem of nonlinear coupled differential equations, defined in the context of generalized forms of Caputo and Riemann-Liouville fractional derivatives, with coupled integral boundary conditions. At the end of the results, the authors provide an example to apply their results numerically. In conclusion, investigating new proposed problems defined with the help of fractional definitions is always interesting and can provide new insights to discover the beauty of this topic of research and its applications in various field of natural sciences and engineering.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] B. Ahmad and S. K. Ntouyas, “Some fractional-order one-dimensional semi-linear problems under nonlocal integral boundary conditions”, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 110:1 (2016), 159-172. · Zbl 1346.34003 · doi:10.1007/s13398-015-0228-4
[2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, and J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Springer, 2017. · Zbl 1370.34002
[3] B. Ahmad, N. Alghamdi, A. Alsaedi, and S. K. Ntouyas, “A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions”, Fract. Calc. Appl. Anal. 22:3 (2019), 601-618. · Zbl 1428.34006 · doi:10.1515/fca-2019-0034
[4] B. Ahmad, M. Alghanmi, A. Alsaedi, and R. P. Agarwal, “On an impulsive hybrid system of conformable fractional differential equations with boundary conditions”, Internat. J. Systems Sci. 51:5 (2020), 958-970. · Zbl 1485.93268 · doi:10.1080/00207721.2020.1746437
[5] A. Alsaedi, B. Ahmad, and M. Alghanmi, “Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions”, Appl. Math. Lett. 91 (2019), 113-120. · Zbl 1408.34003 · doi:10.1016/j.aml.2018.12.006
[6] A. Carvalho and C. M. A. Pinto, “A delay fractional order model for the co-infection of malaria and HIV/AIDS”, Int. J. Dyn. Control 5:1 (2017), 168-186. · doi:10.1007/s40435-016-0224-3
[7] Z. Cen, L.-B. Liu, and J. Huang, “A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative”, Appl. Math. Lett. 102 (2020), art. id. 106086, 8 pp. · Zbl 1524.65276 · doi:10.1016/j.aml.2019.106086
[8] K. Diethelm, The analysis of fractional differential equations, Springer, 2010. · Zbl 1215.34001
[9] Y. Ding, Z. Wang, and H. Ye, “Optimal control of a fractional-order HIV-immune system with memory”, IEEE Trans. Contr. Sys. Tech. 20:3 (2012), 763-769.
[10] M. Faieghi, S. Kuntanapreeda, H. Delavari, and D. Baleanu, “LMI-based stabilization of a class of fractional-order chaotic systems”, Nonlinear Dynam. 72:1-2 (2013), 301-309. · Zbl 1268.93121 · doi:10.1007/s11071-012-0714-6
[11] J. A. Gallegos, N. Aguila-Camacho, and M. A. Duarte-Mermoud, “Smooth solutions to mixed-order fractional differential systems with applications to stability analysis”, J. Integral Equations Appl. 31:1 (2019), 59-84. · Zbl 1420.34012 · doi:10.1216/JIE-2019-31-1-59
[12] C. S. Goodrich, “Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions”, Comput. Math. Appl. 61:2 (2011), 191-202. · Zbl 1211.39002 · doi:10.1016/j.camwa.2010.10.041
[13] C. S. Goodrich, “Coercive nonlocal elements in fractional differential equations”, Positivity 21:1 (2017), 377-394. · Zbl 1367.26017 · doi:10.1007/s11117-016-0427-z
[14] J. Henderson and N. Kosmatov, “Eigenvalue comparison for fractional boundary value problems with the Caputo derivative”, Fract. Calc. Appl. Anal. 17:3 (2014), 872-880. · Zbl 1310.34007 · doi:10.2478/s13540-014-0202-4
[15] J. Henderson and R. Luca, “Nonexistence of positive solutions for a system of coupled fractional boundary value problems”, Bound. Value Probl. (2015), art. id. 2015:138, 12 pp. · Zbl 1341.34006
[16] G. Iskenderoglu and D. Kaya, “Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense”, Chaos Solitons Fractals 134 (2020), 109684, 7 pp. · Zbl 1483.35319 · doi:10.1016/j.chaos.2020.109684
[17] F. Jarad, T. Abdeljawad, and D. Baleanu, “On the generalized fractional derivatives and their Caputo modification”, J. Nonlinear Sci. Appl. 10:5 (2017), 2607-2619. · Zbl 1412.26006 · doi:10.22436/jnsa.010.05.27
[18] M. Javidi and B. Ahmad, “Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system”, Ecological Modelling 318 (2015), 8-18.
[19] U. N. Katugampola, “New approach to a generalized fractional integral”, Appl. Math. Comput. 218:3 (2011), 860-865. · Zbl 1231.26008 · doi:10.1016/j.amc.2011.03.062
[20] U. N. Katugampola, “A new approach to generalized fractional derivatives”, Bull. Math. Anal. Appl. 6:4 (2014), 1-15. · Zbl 1317.26008
[21] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Elsevier, 2006. · Zbl 1092.45003
[22] B. Łupińska and T. Odzijewicz, “A Lyapunov-type inequality with the Katugampola fractional derivative”, Math. Methods Appl. Sci. 41:18 (2018), 8985-8996. · Zbl 1407.34014 · doi:10.1002/mma.4782
[23] N. Laskin, “Fractional quantum mechanics and Lévy path integrals”, Phys. Lett. A 268:4-6 (2000), 298-305. · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[24] E. Nadal, E. Abisset-Chavanne, E. Cueto, and F. Chinesta, “On the physical interpretation of fractional diffusion”, C. R. Mecanique 346:7 (2018), 581-589.
[25] S. K. Ntouyas, B. Ahmad, M. Alghanmi, and A. Alsaedi, “Generalized fractional differential equations and inclusions equipped with nonlocal generalized fractional integral boundary conditions”, Topol. Methods Nonlinear Anal. 54:2B (2019), 1051-1073. · Zbl 1431.34002
[26] T. Ortlepp, O. Ariando, O. Mielke, C. J. M. Verwijs, K. F. K. Foo, H. Rogalla, F. H. Uhlmann, and H. Hilgenkamp, “Flip-flopping fractional flux quanta”, Science 312:5779 (2006), 1495-1497.
[27] K. M. Owolabi and B. Karaagac, “Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator”, Chaos Solitons Fractals 136 (2020), 109835, 11 pp. · Zbl 1489.74064 · doi:10.1016/j.chaos.2020.109835
[28] D. R. Smart, Fixed point theorems, Cambridge Tracts in Mathematics 66, Cambridge University Press, 1974. · Zbl 0297.47042
[29] M. Syed Ali, G. Narayanan, V. Shekher, A. Alsaedi, and B. Ahmad, “Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays”, Commun. Nonlinear Sci. Numer. Simul. 83 (2020), art. id. 105088, 22 pp. · Zbl 1454.34102 · doi:10.1016/j.cnsns.2019.105088
[30] V. V. Tarasova and V. E. Tarasov, “Logistic map with memory from economic model”, Chaos Solitons Fractals 95 (2017), 84-91. · Zbl 1375.91176 · doi:10.1016/j.chaos.2016.12.012
[31] J. Tariboon, S. K. Ntouyas, S. Asawasamrit, and C. Promsakon, “Positive solutions for Hadamard differential systems with fractional integral conditions on an unbounded domain”, Open Math. 15:1 (2017), 645-666. · Zbl 1419.34026 · doi:10.1515/math-2017-0057
[32] A. A. Tateishi, H. V. Ribeiro, and E. K. Lenzi, “The role of fractional time-derivative operators on anomalous diffusion”, Front. Phys. 5 (2017), art. id. 52, 9 pp.
[33] J. Wang, Y. Zhou, and M. Fečkan, “On recent developments in the theory of boundary value problems for impulsive fractional differential equations”, Comput. Math. Appl. 64:10 (2012), 3008-3020. · Zbl 1268.34032 · doi:10.1016/j.camwa.2011.12.064
[34] D. Wang, X.-L. Ding, and B. Ahmad, “Existence and stability results for multi-time scale stochastic fractional neural networks”, Adv. Difference Equ. (2019), paper no. 441, 12 pp. · Zbl 1485.34197
[35] Y. Xu and W. Li, “Finite-time synchronization of fractional-order complex-valued coupled systems”, Phys. A 549 (2020), art. id. 123903, 11 pp. · Zbl 07572656 · doi:10.1016/j.physa.2019.123903
[36] Y. Xu, Y. Li, and W. Li, “Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights”, Commun. Nonlinear Sci. Numer. Simul. 85 (2020), art. id. 105239, 17 pp. · Zbl 1451.93206 · doi:10.1016/j.cnsns.2020.105239
[37] C. Zhai and L. Xu, “Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter”, Commun. Nonlinear Sci. Numer. Simul. 19:8 (2014), 2820-2827. · Zbl 1510.34025 · doi:10.1016/j.cnsns.2014.01.003
[38] F. Zhang, G. Chen, C. Li, and J. Kurths, “Chaos synchronization in fractional differential systems”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371:1990 (2013), art. id. 20120155, 26 pp. · Zbl 1342.34070 · doi:10.1098/rsta.2012.0155
[39] Y. Zhang, X. Liu, M. R. Belić, W. Zhong, Y. Zhang, and M. Xiao, “Propagation dynamics of a light beam in a fractional Schrödinger equation”, Phys. Rev. Lett. 115 (2015), art. id. 180403.
[40] Y. Zhang, H. Zhong, M. R. Belić, Y. Zhu, W. Zhong, Y. Zhang, D. N. Christodoulides, and M. Xiao, “PT symmetry in a fractional Schrödinger equation”, Laser Photonics Rev. 10:3 (2016), 526-531.
[41] Y. · Zbl 1475.93019 · doi:10.1093/imamci/dnx060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.