×

Analysis of \(q\)-fractional implicit boundary value problems having Stieltjes integral conditions. (English) Zbl 1471.39007

Summary: In this article, we make analysis of the implicit \(q\)-fractional differential equations involving integral boundary conditions associated with Stieltjes integral and its corresponding coupled system. We are using some sufficient conditions to achieve the existence and uniqueness results for the given problems by applying the Banach contraction principle, Schaefer’s fixed point theorem, and Leray-Schauder result of cone type. Moreover, we present different kinds of stability such as Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability, and generalized Hyers-Ulam-Rassias stability using the classical technique of functional analysis. At the end, the results are verified with the help of examples.

MSC:

39A13 Difference equations, scaling (\(q\)-differences)
39A12 Discrete version of topics in analysis
39A27 Boundary value problems for difference equations
34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] LeibnizGW. Mathematica Shiften. Hildesheim: Georg Olms Verlagsbuch-handlung; 1962.
[2] SabatierJ, AgrawalOP, MachadoJAT. Advances in Fractional Calculus. Dordrecht: Springer; 2007.
[3] RihanFA. Numerical modeling of fractional order biological systems. Abs Appl Anal. 2013;2013:11. · Zbl 1470.65131
[4] VintagreBM, PodlybniI, HernandezA, FeliuV. Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal. 2000;3(3):231‐248. · Zbl 1111.93302
[5] AhmadN, AliZ, ShahK, ZadaA, RahmanG. Analysis of implicit type nonlinear dynamical problem of impulsive fractional differential equations. Complexity. 2018;2018:15. · Zbl 1398.34013
[6] RiazU, ZadaA, AliZ, CuiY, XuJ. Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv Difference Equ. 2019;2019(226):1‐27. · Zbl 1459.34040
[7] RizwanR, ZadaA, WangX. Stability analysis of non linear implicit fractional Langevin equation with noninstantaneous impulses. Adv Difference Equ. 2019;2019:85. · Zbl 1459.34041
[8] SousaJVDC, De OliveiraEC. On the ψ‐Hilfer fractional derivative. Comm Nonlinear Sci Numer Simulat. 2018;60:72‐91. · Zbl 1470.26015
[9] SousaJVDC, De OliveiraEC. Leibniz type rule: ψ‐Hilfer fractional operator. Comm Nonlinear Sci Numer Simulat. 2019;77:305‐311. · Zbl 1477.26012
[10] SousaJVDC, FredericoG, deOliveiraEC. ψ‐Hilfer pseudo‐fractional operator: new results about fractional calculus. Comp Appl Math. 2020;39(254). https://doi.org/10.1007/s40314‐020‐01304‐6 · Zbl 1463.26015 · doi:10.1007/s40314‐020‐01304‐6
[11] ZadaA, AliS. Stability Analysis of multi‐point boundary value problem for sequential fractional differential equations with noninstantaneous impulses. Int J Nonlinear Sci Numer Simul. 2018;19(7):763‐774. · Zbl 1461.34014
[12] ZadaA, AliS. Stability of integral Caputo‐type boundary value problem with noninstantaneous impulses. Int J Appl Comput Math. 2019;5(3):55. · Zbl 1419.34045
[13] ZadaA, RiazU. Kallman-Rota type inequality for discrete evolution families of bounded linear operators. Frac Diff Cal. 2017;7(2):311‐324. · Zbl 1424.47109
[14] JacksonFH. On q‐functions and a certain difference operator. Earth Environ Sci Trans R Soc Edinb. 1909;46(2):253‐281.
[15] JacksonFH. On a q‐definite integrals. Quart J. 1910;41:193‐203. · JFM 41.0317.04
[16] Al‐SalamWA, Some fractional q‐integrals and q‐derivatives. Proc Edinb Math Soc II Ser. 1966;15(2):135‐140. · Zbl 0171.10301
[17] AgarwalRP. Certain fractional q‐integrals and q‐derivatives. Proc Camb Philos Soc. 1969;66(2):365‐370. · Zbl 0179.16901
[18] AhmadB, EtemadS, EttefaghM, RezapourS. On the existence of solutions for fractional q‐difference inclusions with q‐antiperiodic boundary conditions. Bull Math Soc Sci Math Roum, Nouv Sér. 2016;2:119‐134. · Zbl 1374.39010
[19] RajkovićPM, MarinkovićSD, StankovićMS. Fractional integrals and derivatives in q‐calculus. Appl Anal Discrete Math. 2007;1(1):311‐323. · Zbl 1199.33013
[20] RenJ, ZhaiC. A fractional q‐difference equation with integral boundary conditions and comparison theorem. Int J Nonlinear Sci Numer Simul. 2017;18(7-8):575‐583. · Zbl 1401.39010
[21] AliZ, ZadaA, ShahK. Ulam stability results for the solutions of nonlinear implicit fractional order differential equations. Hacet J Math Stat. 2018;48(4):1092‐1109. · Zbl 1499.34022
[22] RizwanR, ZadaA. Nonlinear impulsive Langevin equation with mixed derivatives. Math Meth App Sci. 2020;43(1):427‐442. · Zbl 1482.34088
[23] RizwanR, ZadaA, WangX. Stability analysis of non linear implicit fractional Langevin equation with non‐instantaneous impulses. Adv Differ Equ. 2019;2019(1):1‐31. · Zbl 1459.34041
[24] ZadaA, AliS, LiT. Analysis of a new class of impulsive implicit sequential fractional differential equations. Int J Nonlin Sci Num. 2020. https://doi.org/10.1515/ijnsns‐2019‐0030 · Zbl 07446851 · doi:10.1515/ijnsns‐2019‐0030
[25] ZadaA, AlzabutJ, WaheedIH, PopaL. Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions. Adv Differ Equ. 2020;2020(1):1‐50. · Zbl 1487.34048
[26] ZadaA, RizwanR, XuJ, FuZ. On implicit impulsive Langevin equation involving mixed order derivatives. Adv Differ Equ. 2019;2019(1):489. · Zbl 1487.34049
[27] ZadaA, WaheedH. Stability analysis of implicit fractional differential equations with anti‐periodic integral boundary value problem. Ann Univ Paedagog Crac Stud Math. 2020;19:5‐25. · Zbl 1538.34042
[28] AhmadM, ZadaA, AlzabutJ. Stability analysis of a nonlinear coupled implicit switched singular fractional differential equations with p‐Laplacian. Adv Differ Equ. 2019;436(2019):23 pages.
[29] AhmadM, ZadaA, AlzabutJ. Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type. Demonstr Math. 2019;52:283‐295. · Zbl 1431.34004
[30] AhmadM, ZadaA, WangX. Existence, uniqueness and stability of implicit switched coupled fractional differential equations of Ψ-Hilfer type. Int J Nonlin Sci Num. 2020;21(3‐4):327-337. https://doi.org/10.1515/ijnsns‐2018‐0371 · Zbl 07336601 · doi:10.1515/ijnsns‐2018‐0371
[31] AhmadB, NietoJJ. Existence results for a coupled system of nonlinear fractional differential equations with three‐point boundary conditions. Comput Math Appl. 2009;58:1838‐1843. · Zbl 1205.34003
[32] AliZ, ZadaA, ShahK. On Ulam’s stability for a coupled systems of nonlinear implicit fractional differential equations. Bull Malays Math Sci Soc. 2019;42(5):2681‐2699. · Zbl 1426.34005
[33] AliZ, ZadaA, ShahK. Ulam stability to a toppled systems of nonlinear implicit fractional order boundary value problem. Bound Value Probl. 2018;175(2018):1‐16. · Zbl 1499.34023
[34] BaiC, FangJ. The existence of a positive solution for a singular coupled system of nonlinear fractional differential equations. Appl Math Comput. 2004;150:611‐621. · Zbl 1061.34001
[35] ChenY, AnH. Numerical solutions of coupled Burgers equations with time and space fractional derivatives. Appl Math Comput. 2008;200:87‐95. · Zbl 1143.65102
[36] GejjiVD. Positive solutions of a system of non‐autonomous fractional differential equations. J Math Anal Appl. 2005;302:56‐64. · Zbl 1064.34004
[37] LazarevićMP. Finite time stability analysis of PD α fractional control of robotic time‐delay systems. Mech Res Commun. 2006;33:269‐279. · Zbl 1192.70008
[38] ZadaA, WaheedH, AlzabutJ, WangX. Existence and stability of impulsive coupled system of fractional integrodifferential equations. Demonstr Math. 2019;52:296‐335. · Zbl 1439.45010
[39] UlamSM. A Collection of the Mathematical Problems. New York: Interscience; 1960. · Zbl 0086.24101
[40] HyersDH, IsacG, RassiasTM. Stability of Functional Equations in Several Variables. Boston: Birkhäuser; 1998. · Zbl 0907.39025
[41] OblozaM. Hyers stability of the linear differential equation. Rocznik NaukDydakt Prace Mat. 1993;13:259‐270. · Zbl 0964.34514
[42] De OliveiraEC, SousaJVDC. Ulam-Hyers-Rassias stability for a class of fractional integro‐differential equations. Results Math. 2018;73(3):111. · Zbl 1401.45011
[43] RassiasTM. On the stability of functional equations and a problem of. Ulam Acta Appl Math. 2000;62:23‐130. · Zbl 0981.39014
[44] RiazU, ZadaA, AliZ, et al. Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. Math Probl Eng. 2019;2019:Article ID 5093572, 20 pages. · Zbl 1435.34016
[45] SousaJVDC, De OliveiraEC. Ulam-Hyers stability of a nonlinear fractional Volterra integro‐differential equation. Appl Math Lett. 2018;81:50‐56. · Zbl 1475.45020
[46] WangJR, ZadaA, WaheedH. Stability analysis of a coupled system of nonlinear implicit fractional anti‐periodic boundary value problem. Math Meth App Sci. 2019;42(18):6706‐6732. · Zbl 1442.34028
[47] ZadaA, ShahO, ShahR. Hyers-Ulam stability of non‐autonomous systems in terms of boundedness of Cauchy problems. Appl Math Comput. 2015;271:512‐518. · Zbl 1410.39049
[48] ZadaA, FatmaS, AliZ, XuJ, CuiY. Stability results for a coupled system of impulsive fractional differential equations. Mathematics. 2019;7(10):927.
[49] ZadaA, PervaizB, ShahSO, XuJ. Stability analysis of first order impulsive nonautonomous system on timescales. Math Meth App Sci. 2020;43(8):5097‐5113. · Zbl 1450.34073
[50] ZhaoY, YeG, ChenH. Multiple positive solutions of a singular semipositone integral boundary value problem for fractional q‐derivatives equation. Abstr Appl Anal. 2013;2013:643571. · Zbl 1274.34079
[51] LiuX, LiuL, WuY. Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives. Bound Value Probl. 2018;2018:24. · Zbl 1409.34012
[52] MinD, LiuL, WuY. Uniqueness of positive solutions for the singular fractional differential equations involving integral boundary value conditions. Bound Value Probl. 2018;2018:23. · Zbl 1409.34015
[53] RenJ, ZhaiC. Nonlocal q‐fractional boundary value problem with Stieltjes integral conditions. Nonlinear Anal Model Control. 2019;24(4):582‐602. · Zbl 1479.39006
[54] HaleJK, LunelSMV. Introduction to Functional Differential Equations. Applied Mathematicals Sciences series. New York: Springer‐Verlag; 1993. · Zbl 0787.34002
[55] GranasA, DugundjiJ. Fixed Point Theory. New York: Springer‐Verlag; 2003. · Zbl 1025.47002
[56] GafiychukV, DatskoB, MeleshkoV, BlackmoreD. Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations. Chaos Solitons Fractals. 2009;41:1095‐1104. · Zbl 1198.35123
[57] WheedenRL, ZygmundA. Measure and Integral: An Introduction to Real Analysis. 1st ed. New York: Taylor and Francis; 1977. · Zbl 0362.26004
[58] BrowderA. Mathematical Analysis: An Introduction. New York: Springer‐Verlag; 1996.
[59] RusIA. Ulam stabilities of ordinary differential equations in a Banach space. Carpath J Math. 2010;26:103‐107. · Zbl 1224.34164
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.