×

On fractional differential inclusion problems involving fractional order derivative with respect to another function. (English) Zbl 1487.34009

Summary: In this research work, we investigate the existence of solutions for a class of nonlinear boundary value problems for fractional-order differential inclusion with respect to another function. Endpoint theorem for \(\varphi\)-weak contractive maps is the main tool in determining our results. An example is presented in aim to illustrate the results.

MSC:

34A08 Fractional ordinary differential equations
34A60 Ordinary differential inclusions
47N20 Applications of operator theory to differential and integral equations
34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] Hamani, S., Benchohra, M. and Graef, John R., Existence results for boundary value problems with nonlinear fractional inclusions and integral conditions, Electron. J. Diff. Equ.2010(20) (2010) 1-16. · Zbl 1185.26010
[2] Agarwal, R. P., Benchohra, M. and Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math.109(3) (2010) 973-1033. · Zbl 1198.26004
[3] Benchohra, M., Graef, J. R. and Hamani, S., Existence results for boundary value problems with nonlinear fractional differential equations, Appl. Anal.87 (2008) 851-863. · Zbl 1198.26008
[4] Belmor, S., Ravichandran, C. and Jarad, F., Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci.14(1) (2020) 114-123. https://doi.org/10.1080/16583655.2019.1709265
[5] Atanacković, T. M., Pilipović, S., Stanković, B. and Zorica, D., Fractional Calculus with Applications in Mechanics (Wiley-ISTE, 2014). · Zbl 1291.74001
[6] Rudolf, H., Applications of Fractional Calculus in Physics (World Scientific, 2000). · Zbl 0998.26002
[7] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul.44 (2017) 460-481. · Zbl 1465.26005
[8] Jarad, F. and Abdeljawad, T., Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst.13(3) (2020) 709-722. · Zbl 1444.44002
[9] Abdeljawad, T., Madjidi, F., Jarad, F. and Sene, N., On dynamic systems in the frame of singular function dependent kernel fractional derivatives, Mathematics7(10) (2019) 946.
[10] Almeida, R., Fractional differential equations with mixed boundary conditions, B. Malays. Math. Sci. Soc.42(4) (2019) 1687-1697. · Zbl 1423.34005
[11] Ameen, R., Jarad, F. and Abdeljawad, T., Ulam stability for delay fractional differential equations with a generalized Caputo derivative, Filomat32(15) (2018) 5265-5274. · Zbl 1513.34296
[12] Jarad, F., Harikrishnan, S., Shah, K. and Kanagarajan, K., Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Contin. Dyn. Syst.13(3) (2020) 723-739. https://doi.org/10.3934/dcdss.2020040 · Zbl 1442.34017
[13] Samet, B. and Aydi, H., Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving \(\psi \)-Caputo fractional derivative, J. Inequal. Appl.2018(286) (2018) 9 pp., https://doi.org/10.1186/s13660-018-1850-4. · Zbl 1498.34041
[14] Sousa, J., Vanterler da, C., Kucche, K. D. and De Oliveira, E. C., Stability of \(\psi \)-Hilfer impulsive fractional differential equations, Appl. Math. Lett.88 (2019) 73-80. · Zbl 1408.34006
[15] Nicoud, F. and Schönfeld, T., Integral boundary conditions for unsteady biomedical CFD applications, Int. J. Numer. Methods Fluids40 (2002) 457-465. · Zbl 1061.76517
[16] Schot, S. H., Eighty years of Sommerfeld’s radiation condition, Historia Math.19(4) (1992) 385-401. · Zbl 0763.01020
[17] Benaïm, M., Hofbauer, J. and Sorin, S., Stochastic approximations and differential inclusions, SIAM J. Control Optim.44(1) (2005) 328-348. · Zbl 1087.62091
[18] Abbas, S., Benchohra, M. and Darwish, M. A., Fractional differential inclusions of Hilfer type under weak topologies in Banach spaces, Asian-European J. Math.13(1) (2018) 2050015. · Zbl 1442.34004
[19] Abbas, S., Benchohra, M., Hamani, S. and Henderson, J., Upper and lower solutions method for Caputo-Hadamard fractional differential inclusions, Math. Morav.23(1) (2019) 107-118. · Zbl 1488.34418
[20] Ahmad, B., Alsaedi, A., Ntouyas, S. K. and Al-Sulami, H. H., On neutral functional differential inclusions involving hadamard fractional derivatives, Mathematics7(11) (2019) 1084.
[21] Ahmad, B., Ntouyas, S. K. and Tariboon, J., A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory, Appl. Math. Lett.52 (2016) 9-14. · Zbl 1330.34017
[22] Ahmad, B., Ntouyas, S. K. and Alsulami, H. H., Existence results for \(n\)-th order multipoint integral boundary-value problems of differential inclusions, Electron. J. Differ. Equ.2013(203) (2013) 1-13. · Zbl 1293.34020
[23] Ahmad, B., Alsaedi, A., Ntouyas, S. K. and Tariboon, J., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities (Springer, Cham, 2017). · Zbl 1370.34002
[24] Agarwal, R. P., Benchohra, M. and Hamani, S., Boundary value problems for fractional differential equations, Adv. Stud. Contemp. Math.16(2) (2008) 181-196. · Zbl 1152.26005
[25] Moradi, S. and Khojasteh, F., Endpoints of \(\varphi \)-weak and generalized \(\varphi \)-weak contractive mappings, Filomat26 (2012) 725-732. · Zbl 1289.54138
[26] Hu, S., Papageorgiou, N., Handbook of Multivalued Analysis, Vol. 1 (Theory, Kluwer, Dordrecht, 1997). · Zbl 0887.47001
[27] Samko, S. G., Kilbas, A. A. and Marichev, O. I., Fractional Integrals and Derivatives, (Gordon and Breach, Yverdon, 1993). · Zbl 0818.26003
[28] Kisielewicz, M., Differential Inclusions and Optimal Control (Kluwer, Dordrecht, The Netherlands, 1991). · Zbl 0731.49001
[29] Jarad, F., Abdeljawad, T. and Baleanu, D., On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl.10(5) (2017) 2607-2619. · Zbl 1412.26006
[30] Katugampola, U. N., New approach to a genaralized fractional integral, Appl. Math. Comput.218(3) (2011) 860-865. · Zbl 1231.26008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.