×

A study of boundary value problem for generalized fractional differential inclusion via endpoint theory for weak contractions. (English) Zbl 1485.34029

Summary: This note is concerned with establishing the existence of solutions to a fractional differential inclusion of a \(\psi\)-Caputo-type with a nonlocal integral boundary condition. Using the concept of the endpoint theorem for \(\phi\)-weak contractive maps, we investigate the existence of solutions to the proposed problem. An example is provided at the end to clarify the theoretical result.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002
[2] Belmor, S.; Ravichandran, C.; Jarad, F., Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14, 1, 114-123 (2020) · doi:10.1080/16583655.2019.1709265
[3] Sohail, A.; Maqbool, K.; Ellahi, R., Stability analysis for fractional-order partial differential equations by means of space spectral time Adams-Bashforth Moulton method, Numer. Methods Partial Differ. Equ., 34, 1, 19-29 (2018) · Zbl 1383.65104 · doi:10.1002/num.22171
[4] Jarad, F.; Abdeljawad, T.; Hammouch, Z., On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solitons Fractals, 117, 16-20 (2018) · Zbl 1442.34016 · doi:10.1016/j.chaos.2018.10.006
[5] Ahmed, I.; Kumam, P.; Jarad, F.; Borisut, P.; Sitthithakerngkiet, K.; Ibrahim, A., Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020, 1 (2020) · Zbl 1482.34013 · doi:10.1186/s13662-020-02681-2
[6] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 460-481 (2017) · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[7] Jarad, F.; Abdeljawad, T., Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst., Ser. S, 13, 3, 709-722 (2020) · Zbl 1444.44002 · doi:10.3934/dcdss.2020039
[8] Sousa, J.; da Vanterler, C.; de Oliveira, E. C., On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1398.34023 · doi:10.1016/j.cnsns.2018.01.005
[9] Ahmed, I.; Kumam, P.; Shah, K.; Borisut, P.; Sitthithakerngkiet, K.; Demba, M. A., Stability results for implicit fractional pantograph differential equations via ϕ-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8, 1 (2020) · doi:10.3390/math8010094
[10] Luo, D.; Shah, K.; Luo, Z., On the novel Ulam-Hyers stability for a class of nonlinear ψ-Hilfer fractional differential equation with time-varying delays, Mediterr. J. Math., 16, 5 (2019) · Zbl 1429.34080 · doi:10.1007/s00009-019-1387-x
[11] Harikrishnan, S.; Shah, K.; Baleanu, D.; Kanagarajan, K., Note on the solution of random differential equations via ψ-Hilfer fractional derivative, Adv. Differ. Equ., 2018 (2018) · Zbl 1446.34071 · doi:10.1186/s13662-018-1678-8
[12] Borisut, P.; Kumam, P.; Ahmed, I.; Jirakitpuwapat, W., Existence and uniqueness for ψ-Hilfer fractional differential equation with nonlocal multi-point condition, Math. Methods Appl. Sci. (2020) · Zbl 07376689 · doi:10.1002/mma.6092
[13] Stankovic, S. S., Stochastic inclusion principle applied to decentralized automatic generation control, Int. J. Control, 72, 3, 276-288 (1999) · Zbl 0954.93002 · doi:10.1080/002071799221253
[14] Alqudah, M. A.; Ravichandran, C.; Abdeljawad, T.; Valliammal, N., New results on Caputo fractional-order neutral differential inclusions without compactness, Adv. Differ. Equ., 2019, 1 (2019) · Zbl 1487.34149 · doi:10.1186/s13662-019-2455-z
[15] Phung, P.; Truong, L., On a fractional differential inclusion with integral boundary conditions in Banach space, Fract. Calc. Appl. Anal., 16, 3, 538-558 (2013) · Zbl 1312.34102 · doi:10.2478/s13540-013-0035-6
[16] Abbas, S.; Benchohra, M.; Petrusel, A., Ulam stability for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theory Differ. Equ., 2014 (2014) · Zbl 1343.39023 · doi:10.1186/1687-1847-2014-51
[17] Rezaigia, A.; Kelaiaia, S., Existence results for third-order differential inclusion with three-point boundary value problems, Acta Math. Univ. Comen., 2, 311-318 (2016) · Zbl 1374.34041
[18] Abbas, S.; Benchohra, M.; Hamani, S.; Henderson, J., Upper and lower solutions method for Caputo-Hadamard fractional differential inclusions, Math. Morav., 23, 1, 107-118 (2019) · Zbl 1488.34418 · doi:10.5937/MatMor1901107A
[19] Belmor, S.; Jarad, F.; Abdeljawad, T.; Alqudah, M. A., On fractional differential inclusion problems involving fractional order derivative with respect to another function, Fractals, 20, 8 (2020) · Zbl 1487.34009 · doi:10.1142/S0218348X20400022
[20] Khan, A.; Shah, K.; Kumam, P.; Onsod, W., An \((\alpha,\vartheta)\)-admissibility and theorems for fixed points of self-maps, Econometrics for Financial Applications, 369-380 (2018), Cham: Springer, Cham
[21] Iqbal, M.; Shah, K.; Khan, R. A., On using coupled fixed-point theorems for mild solutions to coupled system of multipoint boundary value problems of nonlinear fractional hybrid pantograph differential equations, Math. Methods Appl. Sci. (2020) · Zbl 1483.34103 · doi:10.1002/mma.5799
[22] Jarad, F.; Harikrishnan, S.; Shah, K.; Kanagarajan, K., Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative, Discrete Contin. Dyn. Syst., Ser. S, 13, 3, 723-739 (2020) · Zbl 1442.34017 · doi:10.3934/dcdss.2020040
[23] Etemad, S.; Rezapour, Sh.; Samei, M. E., On fractional hybrid and non-hybrid multi-term integro-differential inclusions with three-point integral hybrid boundary conditions, Adv. Differ. Equ., 2020 (2020) · Zbl 1482.34067 · doi:10.1186/s13662-020-02627-8
[24] Etemad, S.; Ntouyas, S. K., Application of the fixed point theorems on the existence of solutions for q-fractional boundary value problems, AIMS Math., 4, 3, 997-1018 (2019) · Zbl 1484.39004 · doi:10.3934/math.2019.3.997
[25] Ntouyas, S. K.; Etemad, S., On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions, Appl. Math. Comput., 266, 235-243 (2015) · Zbl 1410.34028
[26] Ahmad, B.; Alsaedi, A.; Ntouyas, S. K.; Tariboon, J., Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities (2017), Cham: Springer, Cham · Zbl 1370.34002
[27] Agarwal, R. P.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109, 3, 973-1033 (2010) · Zbl 1198.26004 · doi:10.1007/s10440-008-9356-6
[28] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Yverdon: Gordon & Breach, Yverdon · Zbl 0818.26003
[29] Jarad, F.; Abdeljawad, T.; Baleanu, D., Caputo-type modification of the Hadamard fractional derivative, Adv. Differ. Equ., 2012 (2012) · Zbl 1346.26002 · doi:10.1186/1687-1847-2012-142
[30] Jarad, F.; Abdeljawad, T.; Baleanu, D., On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., 10, 5, 2607-2619 (2017) · Zbl 1412.26006 · doi:10.22436/jnsa.010.05.27
[31] Moradi, S.; Khojasteh, F., Endpoints of φ-weak and generalized φ-weak contractive mappings, Filomat, 26, 725-732 (2012) · Zbl 1289.54138 · doi:10.2298/FIL1204725M
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.