×

Quantum quench in the infinitely repulsive Hubbard model: the stationary state. (English) Zbl 1457.82015

Summary: We use the quench action approach to study the non-equilibrium dynamics after a quantum quench in the Hubbard model in the limit of infinite interaction. We identify a variety of low-entangled initial states for which we can directly compute the overlaps with the Hamiltonian’s eigenstates. For these initial states, we analytically find the rapidity distributions of the stationary state characterising the expectation values of all local observables. Some of the initial states considered are not reflection symmetric and lead to non-symmetric rapidity distributions. To study such cases, we have to introduce a generalised form for the reduced entropy which measures the entropy restricted to states with non-zero overlap. The initial states considered are of direct experimental realisability and also represent ideal candidates for studying non-equilibrium dynamics in the Hubbard model for finite interactions.

MSC:

82B10 Quantum equilibrium statistical mechanics (general)
82B23 Exactly solvable models; Bethe ansatz

References:

[1] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press) · Zbl 0787.47006 · doi:10.1017/CBO9780511628832
[2] Takahashi M 1999 Thermodynamics of One-Dimensional Solvable Models (Cambridge: Cambridge University Press) · Zbl 1046.82007 · doi:10.1017/CBO9780511524332
[3] Essler F H L, Frahm H, Göhmann F, Klümper A and Korepin V E 2003 The One-Dimensional Hubbard Model (Cambridge: Cambridge University Press)
[4] Bloch I, Dalibard J and Zwerger W 2008 Many-body physics with ultracold gases Rev. Mod. Phys.80 885 · doi:10.1103/RevModPhys.80.885
[5] Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 One dimensional bosons: from condensed matter systems to ultracold gases Rev. Mod. Phys.83 1405 · doi:10.1103/RevModPhys.83.1405
[6] Guan X-W, Batchelor M T and Lee C 2013 Fermi gases in one dimension: from Bethe ansatz to experiments Rev. Mod. Phys.85 1633 · doi:10.1103/RevModPhys.85.1633
[7] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Colloquium: nonequilibrium dynamics of closed interacting quantum systems Rev. Mod. Phys.83 863 · doi:10.1103/RevModPhys.83.863
[8] Calabrese P, Essler F H L and Mussardo G 2017 Introduction to quantum integrability in out of equilibrium systems J. Stat. Mech. P064001 · doi:10.1088/1742-5468/2016/06/064001
[9] Essler F H L and Fagotti M 2017 Quench dynamics and relaxation in isolated integrable quantum spin chains J. Stat. Mech. 064002 · Zbl 1456.82585 · doi:10.1088/1742-5468/2016/06/064002
[10] Calabrese P and Cardy J 2017 Quantum quenches in 1 + 1 dimensional conformal field theories J. Stat. Mech. 064003 · Zbl 1456.81359 · doi:10.1088/1742-5468/2016/06/064003
[11] Cazalilla M A and Chung M-C 2017 Quantum Quenches in the Luttinger model and its close relatives J. Stat. Mech. 064004 · Zbl 1456.81051 · doi:10.1088/1742-5468/2016/06/064004
[12] Bernard D and Doyon B 2017 Conformal field theory out of equilibrium: a review J. Stat. Mech. 064005 · Zbl 1456.81351 · doi:10.1088/1742-5468/2016/06/064005
[13] Caux J-S 2017 The quench action J. Stat. Mech. 064006 · Zbl 1456.81227 · doi:10.1088/1742-5468/2016/06/064006
[14] Vidmar L and Rigol M 2017 Generalized Gibbs ensemble in integrable lattice models J. Stat. Mech. 064007 · Zbl 1456.81118 · doi:10.1088/1742-5468/2016/06/064007
[15] Ilievski E, Medenjak M, Prosen T and Zadnik L 2017 Quasilocal charges in integrable lattice systems J. Stat. Mech. 064008 · Zbl 1456.81238 · doi:10.1088/1742-5468/2016/06/064008
[16] Langen T, Gasenzer T and Schmiedmayer J 2017 Prethermalization and universal dynamics in near-integrable quantum systems J. Stat. Mech. 064009 · Zbl 1456.81242 · doi:10.1088/1742-5468/2016/06/064009
[17] Vasseur R and Moore J E 2017 Nonequilibrium quantum dynamics and transport: from integrability to many-body localization J. Stat. Mech. 064010 · Zbl 1456.81096 · doi:10.1088/1742-5468/2016/06/064010
[18] De Luca A and Mussardo G 2017 Equilibration properties of classical integrable field theories J. Stat. Mech. 0640011 · Zbl 1456.82243 · doi:10.1088/1742-5468/2016/06/064011
[19] Gogolin C and Eisert J 2016 Equilibration, thermalisation and the emergence of statistical mechanics in closed quantum systems Rep. Prog. Phys.79 056001 · doi:10.1088/0034-4885/79/5/056001
[20] De Nardis J and Caux J-S 2017 Analytical expression for a post-quench time evolution of the one-body density matrix of one-dimensional hard-core bosons J. Stat. Mech. P12012 · doi:10.1088/1742-5468/2014/12/p12012
[21] Cazalilla M A 2006 Effect of suddenly turning on interactions in the Luttinger model Phys. Rev. Lett.97 156403 · doi:10.1103/PhysRevLett.97.156403
[22] Iucci A and Cazalilla M A 2009 Quantum quench dynamics of the Luttinger model Phys. Rev. A 80 063619 · doi:10.1103/PhysRevA.80.063619
[23] Iucci A and Cazalilla M A 2010 Quantum quench dynamics of the sine-Gordon model in some solvable limits New J. Phys.12 055019 · Zbl 1375.82063 · doi:10.1088/1367-2630/12/5/055019
[24] Cazalilla M A, Iucci A and Chung M-C 2012 Thermalization and quantum correlations in exactly solvable models Phys. Rev. E 85 011133 · doi:10.1103/PhysRevE.85.011133
[25] Barthel T and Schollwöck U 2008 Dephasing and the steady state in quantum many-particle systems Phys. Rev. Lett.100 100601 · doi:10.1103/PhysRevLett.100.100601
[26] Cramer M, Dawson C M, Eisert J and Osborne T J 2008 Exact relaxation in a class of nonequilibrium quantum lattice Systems Phys. Rev. Lett.100 030602 · doi:10.1103/PhysRevLett.100.030602
[27] Cramer M and Eisert J 2010 A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states New J. Phys.12 055020 · Zbl 1375.82060 · doi:10.1088/1367-2630/12/5/055020
[28] Sotiriadis S, Calabrese P and Cardy J 2009 Quantum quench from a thermal initial state Europhys. Lett.87 20002 · doi:10.1209/0295-5075/87/20002
[29] Calabrese P, Essler F H L and Fagotti M 2011 Quantum quench in the transverse-field Ising chain Phys. Rev. Lett.106 227203 · doi:10.1103/PhysRevLett.106.227203
[30] Calabrese P, Essler F H L and Fagotti M 2017 Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators J. Stat. Mech. P07016 · doi:10.1088/1742-5468/2012/07/p07016
[31] Calabrese P, Essler F H L and Fagotti M 2017 Quantum quenches in the transverse field Ising chain: II. Stationary state properties J. Stat. Mech. P07022 · doi:10.1088/1742-5468/2012/07/p07022
[32] Gritsev V, Rostunov T and Demler E 2017 Exact methods in the analysis of the non-equilibrium dynamics of integrable models: application to the study of correlation functions for non-equilibrium 1D Bose gas J. Stat. Mech. P05012 · Zbl 1456.82587 · doi:10.1088/1742-5468/2010/05/p05012
[33] Mossel J and Caux J-S 2012 Exact time evolution of space- and time-dependent correlation functions after an interaction quench in the one-dimensional Bose gas New J. Phys.14 075006 · doi:10.1088/1367-2630/14/7/075006
[34] Schuricht D and Essler F H L 2017 Dynamics in the Ising field theory after a quantum quench J. Stat. Mech. P04017 · doi:10.1088/1742-5468/2012/04/p04017
[35] Collura M, Sotiriadis S and Calabrese P 2013 Equilibration of a Tonks-Girardeau gas following a trap release Phys. Rev. Lett.110 245301 · doi:10.1103/PhysRevLett.110.245301
[36] Collura M, Sotiriadis S and Calabrese P 2017 Quench dynamics of a Tonks-Girardeau gas released from a harmonic trap J. Stat. Mech. P09025 · Zbl 1456.82581 · doi:10.1088/1742-5468/2013/09/p09025
[37] Fagotti M and Essler F H L 2013 Reduced density matrix after a quantum quench Phys. Rev. B 87 245107 · doi:10.1103/PhysRevB.87.245107
[38] Kormos M, Collura M and Calabrese P 2014 Analytic results for a quantum quench from free to hard-core one-dimensional bosons Phys. Rev. A 89 013609 · doi:10.1103/PhysRevA.89.013609
[39] Collura M, Kormos M and Calabrese P 2014 Stationary entanglement entropies following an interaction quench in 1D Bose gas J. Stat. Mech. P01009 · Zbl 1456.82040 · doi:10.1088/1742-5468/2014/01/P01009
[40] Mazza P P, Collura M, Kormos M and Calabrese P 2017 Interaction quench in a trapped one-dimensional Bose gas J. Stat. Mech. P11016 · doi:10.1088/1742-5468/2014/11/p11016
[41] Bucciantini L, Kormos M and Calabrese P 2014 Quantum quenches from excited states in the Ising chain J. Phys. A: Math. Theor.47 175002 · Zbl 1291.82067 · doi:10.1088/1751-8113/47/17/175002
[42] Kormos M, Bucciantini L and Calabrese P 2014 Stationary entropies after a quench from excited states in the Ising chain Europhys. Lett.107 40002 · doi:10.1209/0295-5075/107/40002
[43] Sotiriadis S and Calabrese P 2017 Validity of the GGE for quantum quenches from interacting to noninteracting models J. Stat. Mech. P07024 · Zbl 1456.82024 · doi:10.1088/1742-5468/2014/07/p07024
[44] Sotiriadis S 2016 Memory-preserving equilibration after a quantum quench in a one-dimensional critical model Phys. Rev. A 94 031605 · doi:10.1103/PhysRevA.94.031605
[45] Pozsgay B and Eisler V 2017 Real-time dynamics in a strongly interacting bosonic hopping model: global quenches and mapping to the XX chain J. Stat. Mech. 053107 · Zbl 1456.82314 · doi:10.1088/1742-5468/2016/05/053107
[46] Piroli L, Pozsgay B and Vernier E 2017 From the quantum transfer matrix to the quench action: the Loschmidt echo in XXZ Heisenberg spin chains J. Stat. Mech. 23106 · Zbl 1456.81469 · doi:10.1088/1742-5468/aa5d1e
[47] Piroli L and Calabrese P 2017 Exact dynamics following an interaction quench in a one-dimensional anyonic gas Phys. Rev. A 96 023611 · doi:10.1103/PhysRevA.96.023611
[48] Kormos M, Shashi A, Chou Y-Z, Caux J-S and Imambekov A 2013 Interaction quenches in the one-dimensional Bose gas Phys. Rev. B 88 205131 · doi:10.1103/PhysRevB.88.205131
[49] Pozsgay B 2017 The generalized Gibbs ensemble for Heisenberg spin chains J. Stat. Mech. P07003 · Zbl 1456.82311 · doi:10.1088/1742-5468/2013/07/p07003
[50] Fagotti M and Essler F H L 2017 Stationary behaviour of observables after a quantum quench in the spin-1/2 Heisenberg XXZ chain J. Stat. Mech. P07012 · Zbl 1456.82015 · doi:10.1088/1742-5468/2013/07/p07012
[51] Fagotti M, Collura M, Essler F H L and Calabrese P 2014 Relaxation after quantum quenches in the spin-12 Heisenberg XXZ chain Phys. Rev. B 89 125101 · doi:10.1103/PhysRevB.89.125101
[52] Pozsgay B 2017 Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species J. Stat. Mech. P09026 · Zbl 1456.82310 · doi:10.1088/1742-5468/2014/09/p09026
[53] Goldstein G and Andrei N 2014 Failure of the local generalized Gibbs ensemble for integrable models with bound states Phys. Rev. A 90 043625 · doi:10.1103/PhysRevA.90.043625
[54] Ilievski E, De Nardis J, Wouters B, Caux J-S, Essler F H L and Prosen T 2015 Complete generalized Gibbs ensembles in an interacting theory Phys. Rev. Lett.115 157201 · doi:10.1103/PhysRevLett.115.157201
[55] Ilievski E, Quinn E and Caux J-S 2017 From interacting particles to equilibrium statistical ensembles Phys. Rev. B 95 115128 · doi:10.1103/PhysRevB.95.115128
[56] Pozsgay B, Vernier E and Werner M A 2017 On generalized Gibbs ensembles with an infinite set of conserved charges (arXiv:1703.09516)
[57] Piroli L, Vernier E and Calabrese P 2016 Exact steady states for quantum quenches in integrable Heisenberg spin chains Phys. Rev. B 94 054313 · doi:10.1103/PhysRevB.94.054313
[58] Piroli L, Vernier E, Calabrese P and Rigol M 2017 Correlations and diagonal entropy after quantum quenches in XXZ chains Phys. Rev. B 95 054308 · doi:10.1103/PhysRevB.95.054308
[59] Essler F H L, Mussardo G and Panfil M 2015 Generalized Gibbs ensembles for quantum field theories Phys. Rev. A 91 051602 · doi:10.1103/PhysRevA.91.051602
[60] Essler F H L, Mussardo G and Panfil M 2017 On Truncated Generalized Gibbs Ensembles in the Ising Field Theory J. Stat. Mech. 013103 · Zbl 1457.82064 · doi:10.1088/1742-5468/aa53f4
[61] Doyon B, Lucas A, Schalm K and Bhaseen M J 2015 Non-equilibrium steady states in the Klein-Gordon theory J. Phys. A 48 095002 · Zbl 1312.82014 · doi:10.1088/1751-8113/48/9/095002
[62] Doyon B 2017 Thermalization and pseudolocality in extended quantum systems (arXiv:1512.03713)
[63] Bastianello A and Sotiriadis S 2017 Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories J. Stat. Mech. 023105 · Zbl 1456.81459 · doi:10.1088/1742-5468/aa5738
[64] Vernier E and Cortés Cubero A 2017 Quasilocal charges and progress towards the complete GGE for field theories with nondiagonal scattering J. Stat. Mech. 23101 · Zbl 1456.81449 · doi:10.1088/1742-5468/aa5288
[65] Cardy J 2017 Quantum quenches to a critical point in one dimension: some further results J. Stat. Mech. 023103 · Zbl 1456.81049 · doi:10.1088/1742-5468/2016/02/023103
[66] Pozsgay B 2017 Quantum quenches and generalized Gibbs ensemble in a Bethe ansatz solvable lattice model of interacting bosons J. Stat. Mech. P10045 · Zbl 1456.82312 · doi:10.1088/1742-5468/2014/10/p10045
[67] Prosen T 2011 Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport Phys. Rev. Lett.106 217206 · doi:10.1103/PhysRevLett.106.217206
[68] Ilievski E and Prosen T 2012 Thermodyamic bounds on Drude weights in terms of almost-conserved quantities Commun. Math. Phys.318 809 · Zbl 1271.82002 · doi:10.1007/s00220-012-1599-4
[69] Prosen T and Ilievski E 2013 Families of quasilocal conservation laws and quantum spin transport Phys. Rev. Lett.111 057203 · doi:10.1103/PhysRevLett.111.057203
[70] Prosen T 2014 Quasilocal conservation laws in XXZ spin-1/2 chains: open, periodic and twisted boundary conditions Nucl. Phys. B 886 1177 · Zbl 1325.82015 · doi:10.1016/j.nuclphysb.2014.07.024
[71] Zadnik L, Medenjak M and Prosen T 2016 Quasilocal conservation laws from semicyclic irreducible representations of in XXZ spin-1/2 chains Nucl. Phys. B 902 339 · Zbl 1332.82020 · doi:10.1016/j.nuclphysb.2015.11.023
[72] Ilievski E, Medenjak M and Prosen T 2015 Quasilocal conserved operators in the isotropic Heisenberg spin-1/2 chain Phys. Rev. Lett.115 120601 · doi:10.1103/PhysRevLett.115.120601
[73] Pereira R G, Pasquier V, Sirker J and Affleck I 2017 Exactly conserved quasilocal operators for the XXZ spin chain J. Stat. Mech. P09037 · Zbl 1456.82171 · doi:10.1088/1742-5468/2014/09/p09037
[74] Piroli L and Vernier E 2017 Quasi-local conserved charges and spin transport in spin-1 integrable chains J. Stat. Mech. 053106 · Zbl 1456.82307 · doi:10.1088/1742-5468/2016/05/053106
[75] Kinoshita T, Wenger T and Weiss D S 2006 A quantum Newton cradle Nature440 900 · doi:10.1038/nature04693
[76] Rigol M, Dunjko V, Yurovsky V and Olshanii M 2007 Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons Phys. Rev. Lett.98 050405 · doi:10.1103/PhysRevLett.98.050405
[77] Berges J, Borsanyi S and Wetterich C 2004 Prethermalization Phys. Rev. Lett.93 142002 · doi:10.1103/PhysRevLett.93.142002
[78] Moeckel M and Kehrein S 2008 Interaction quench in the Hubbard model Phys. Rev. Lett.100 175702 · doi:10.1103/PhysRevLett.100.175702
[79] Moeckel M and Kehrein S 2009 Real-time evolution for weak interaction quenches in quantum systems Ann. Phys.324 2146 · Zbl 1177.82086 · doi:10.1016/j.aop.2009.03.009
[80] Rosch A, Rasch D, Binz B and Vojta M 2008 Metastable superfluidity of repulsive fermionic atoms in optical lattices Phys. Rev. Lett.101 265301 · doi:10.1103/PhysRevLett.101.265301
[81] Kollar M, Wolf F A and Eckstein M 2011 Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems Phys. Rev. B 84 054304 · doi:10.1103/PhysRevB.84.054304
[82] van den M, Sawyer B C, Bollinger J J and Kastner M 2013 Relaxation timescales and decay of correlations in a long-range interacting quantum simulator New J. Phys.15 083007 · doi:10.1088/1367-2630/15/8/083007
[83] Marcuzzi M, Marino J, Gambassi A and Silva A 2013 Prethermalization in a nonintegrable quantum spin chain after a quench Phys. Rev. Lett.111 197203 · doi:10.1103/PhysRevLett.111.197203
[84] Essler F H L, Kehrein S, Manmana S R and Robinson N J 2014 Quench dynamics in a model with tuneable integrability breaking Phys. Rev. B 89 165104 · doi:10.1103/PhysRevB.89.165104
[85] Nessi N, Iucci A and Cazalilla M A 2014 Quantum quench and prethermalization dynamics in a two-dimensional Fermi gas with long-range Interactions Phys. Rev. Lett.113 210402 · doi:10.1103/PhysRevLett.113.210402
[86] Fagotti M 2014 On conservation laws, relaxation and pre-relaxation after a quantum quench J. Stat. Mech. P03016 · Zbl 1456.81232 · doi:10.1088/1742-5468/2014/03/P03016
[87] Brandino G P, Caux J-S and Konik R M 2015 Glimmers of a quantum KAM theorem: insights from quantum quenches in one-dimensional Bose gases Phys. Rev. X 5 041043 · doi:10.1103/PhysRevX.5.041043
[88] Bertini B and Fagotti M 2015 Pre-relaxation in weakly interacting models J. Stat. Mech. P07012 · Zbl 1456.82610 · doi:10.1088/1742-5468/2015/07/P07012
[89] Chiocchetta A, Tavora M, Gambassi A and Mitra A 2015 Short-time universal scaling in an isolated quantum system after a quench Phys. Rev. B 91 220302 · doi:10.1103/PhysRevB.91.220302
[90] Babadi M, Demler E and Knap M 2015 Far-from-equilibrium field theory of many-body quantum spin systems: prethermalization and relaxation of spin spiral states in three dimensions Phys. Rev. X 5 041005 · doi:10.1103/PhysRevX.5.041005
[91] Smacchia P, Knap M, Demler E and Silva A 2015 Exploring dynamical phase transitions and prethermalization with quantum noise of excitations Phys. Rev. B 91 205136 · doi:10.1103/PhysRevB.91.205136
[92] Bertini B, Essler F H L, Groha S and Robinson N J 2015 Prethermalization and thermalization in models with weak integrability breaking Phys. Rev. Lett.115 180601 · doi:10.1103/PhysRevLett.115.180601
[93] Fagotti M and Collura M 2015 Universal prethermalization dynamics of entanglement entropies after a global quench (arXiv:1507.02678)
[94] Menegoz G and Silva A 2015 Prethermalization of weakly interacting bosons after a sudden interaction quench J. Stat. Mech. P05035 · Zbl 1456.82823 · doi:10.1088/1742-5468/2015/05/P05035
[95] Marcuzzi M, Marino J, Gambassi A and Silva A 2016 Prethermalization from a low-density Holstein-Primakoff expansion Phys. Rev. B 94 214304 · doi:10.1103/PhysRevB.94.214304
[96] Chiocchetta A, Gambassi A, Diehl S and Marino J 2017 Dynamical crossovers in prethermal critical states Phys. Rev. Lett.118 135701 · doi:10.1103/PhysRevLett.118.135701
[97] Bertini B, Essler F H L, Groha S and Robinson N J 2016 Thermalization and light cones in a model with weak integrability breaking Phys. Rev. B 94 245117 · doi:10.1103/PhysRevB.94.245117
[98] Alba V and Fagotti M 2017 Prethermalization at low temperature: the scent of a spontaneously broken symmetry (arXiv:1701.05552)
[99] Frerot I, Naldesi P and Roscilde T 2017 Multi-speed prethermalization in spin models with power-law decaying interactions (arXiv:1704.04461)
[100] Calabrese P and Cardy J 2017 Evolution of entanglement entropy in one-dimensional systems J. Stat. Mech. P04010 · Zbl 1456.82578
[101] Alba V and Calabrese P 2017 Entanglement and thermodynamics after a quantum quench in integrable systems (arXiv:1608.00614)
[102] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M and Greiner M 2016 Quantum thermalization through entanglement in an isolated many-body system Science353 794 · doi:10.1126/science.aaf6725
[103] Dubail J 2017 Entanglement scaling of operators: a conformal field theory approach, with a glimpse of simulability of long-time dynamics in 1 + 1d J. Phys. A: Math. Theor.50 234001 · Zbl 1371.81045 · doi:10.1088/1751-8121/aa6f38
[104] Alba V and Calabrese P 2017 Quench action and Renyi entropies in integrable systems (arXiv:1705.10765)
[105] Bertini B and Fagotti M 2016 Determination of the nonequilibrium steady state emerging from a defect Phys. Rev. Lett.117 130402 · doi:10.1103/PhysRevLett.117.130402
[106] Castro-Alvaredo O A, Doyon B and Yoshimura T 2016 Emergent hydrodynamics in integrable quantum systems out of equilibrium Phys. Rev. X 6 041065 · doi:10.1103/PhysRevX.6.041065
[107] Bertini B, Collura M, De Nardis J and Fagotti M 2016 Transport in out-of-equilibrium XXZ chains: exact profiles of charges and currents Phys. Rev. Lett.117 207201 · doi:10.1103/PhysRevLett.117.207201
[108] Fagotti M 2017 Charges and currents in quantum spin chains: late-time dynamics and spontaneous currents J. Phys. A: Math. Theor.50 034005 · Zbl 1357.82037 · doi:10.1088/1751-8121/50/3/034005
[109] Doyon B and Yoshimura T 2017 A note on generalized hydrodynamics: inhomogeneous fields and other concepts SciPost Phys.2 14 · doi:10.21468/SciPostPhys.2.2.014
[110] Doyon B, Spohn H and Yoshimura T 2017 A geometric viewpoint on generalized hydrodynamics (arXiv:1704.04409)
[111] Doyon B, Yoshimura T and Caux J-S 2017 Soliton gases and generalized hydrodynamics (arXiv:1704.05482)
[112] Doyon B, Dubail J, Konik R and Yoshimura T 2017 Generalized hydrodynamics and density waves in interacting one-dimensional Bose gases (arXiv:1704.04151)
[113] Bulchandani V B, Vasseur R, Karrasch C and Moore J E 2017 Solvable hydrodynamics of quantum integrable systems (arXiv:1704.03466)
[114] Bulchandani V B, Vasseur R, Karrasch C and Moore J E 2017 Bethe-Boltzmann Hydrodynamics and Spin Transport in the XXZ Chain (arXiv:1702.06146)
[115] Bastianello A and De Luca A 2017 Non-Equilibrium steady state generated by a moving defect: the supersonic threshold (arXiv:1705.09270)
[116] Piroli L, De Nardis J, Collura M, Bertini B and Fagotti M 2017 Transport in out-of-equilibrium XXZ chains: non-ballistic behavior and correlation functions (arXiv:1706.00413)
[117] Alba V 2017 Entanglement and quantum transport in integrable systems (arXiv:1706.00020)
[118] Calabrese P and Cardy J 2006 Time dependence of correlation functions following a quantum quench Phys. Rev. Lett.96 136801 · doi:10.1103/PhysRevLett.96.136801
[119] Calabrese P and Cardy J 2017 Quantum quenches in extended systems J. Stat. Mech. P06008 · Zbl 1456.81358 · doi:10.1088/1742-5468/2007/06/p06008
[120] Faribault A, Calabrese P and Caux J-S 2017 Quantum quenches from integrability: the fermionic pairing model J. Stat. Mech. P03018 · doi:10.1088/1742-5468/2009/03/p03018
[121] Faribault A, Calabrese P and Caux J-S 2009 Bethe ansatz approach to quench dynamics in the Richardson model J. Math. Phys.50 095212 · Zbl 1248.82024 · doi:10.1063/1.3183720
[122] Gambassi A and Calabrese P 2011 Quantum quenches as classical critical films EuroPhys. Lett.95 66007 · doi:10.1209/0295-5075/95/66007
[123] Fioretto D and Mussardo G 2010 Quantum quenches in integrable field theories New J. Phys.12 055015 · Zbl 1375.81169 · doi:10.1088/1367-2630/12/5/055015
[124] Sotiriadis S, Fioretto D and Mussardo G 2017 Zamolodchikov-Faddeev algebra and quantum quenches in integrable field theories J. Stat. Mech. P02017 · Zbl 1456.81254 · doi:10.1088/1742-5468/2012/02/p02017
[125] Pozsgay B 2017 Mean values of local operators in highly excited Bethe states J. Stat. Mech. P01011 · Zbl 1456.82213 · doi:10.1088/1742-5468/2011/01/p01011
[126] Bertini B, Schuricht D and Essler F H L 2017 Quantum quench in the sine-Gordon model J. Stat. Mech. P10035 · Zbl 1456.81047 · doi:10.1088/1742-5468/2014/10/p10035
[127] Iyer D and Andrei N 2012 Quench dynamics of the interacting Bose gas in one dimension Phys. Rev. Lett.109 115304 · doi:10.1103/PhysRevLett.109.115304
[128] Iyer D, Guan H and Andrei N 2013 Exact formalism for the quench dynamics of integrable models Phys. Rev. A 87 053628 · doi:10.1103/PhysRevA.87.053628
[129] Goldstein G and Andrei N 2017 Equilibration and generalized GGE in the Lieb-Liniger gas (arXiv:1309.3471)
[130] Caux J-S and Essler F H L 2013 Time evolution of local observables after quenching to an integrable model Phys. Rev. Lett.110 257203 · doi:10.1103/PhysRevLett.110.257203
[131] Mussardo G 2013 Infinite-time average of local fields in an integrable quantum field theory after a quantum quench Phys. Rev. Lett.111 100401 · doi:10.1103/PhysRevLett.111.100401
[132] Liu W and Andrei N 2014 Quench dynamics of the anisotropic Heisenberg model Phys. Rev. Lett.112 257204 · doi:10.1103/PhysRevLett.112.257204
[133] Delfino G 2014 Quantum quenches with integrable pre-quench dynamics J. Phys. A: Math. Theor.47 402001 · Zbl 1300.81027 · doi:10.1088/1751-8113/47/40/402001
[134] Delfino G and Viti J 2017 On the theory of quantum quenches in near-critical systems J. Phys. A: Math. Theor.50 084004 · Zbl 1361.82023 · doi:10.1088/1751-8121/aa5660
[135] Alba V 2015 Simulating the generalized Gibbs ensemble (GGE): a Hilbert space Monte Carlo approach (arXiv:1507.06994)
[136] Cortés Cubero A 2017 Planar quantum quenches: computation of exact time-dependent correlation functions at large N J. Stat. Mech. 083107 · Zbl 1457.82131 · doi:10.1088/1742-5468/2016/08/083107
[137] Ilievski E, Quinn E, Nardis J D and Brockmann M 2017 String-charge duality in integrable lattice models J. Stat. Mech. 063101 · Zbl 1456.82050 · doi:10.1088/1742-5468/2016/06/063101
[138] Kormos M, Collura M, Takács G and Calabrese P 2017 Real time confinement following a quantum quench to a non-integrable model Nat. Phys.13 246 · doi:10.1038/nphys3934
[139] Rakovszky T, Mestyán M, Collura M, Kormos M and Takács G 2016 Hamiltonian truncation approach to quenches in the Ising field theory Nucl. Phys. B 911 805 · Zbl 1346.82021 · doi:10.1016/j.nuclphysb.2016.08.024
[140] Wouters B, De Nardis J, Brockmann M, Fioretto D, Rigol M and Caux J-S 2014 Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions Phys. Rev. Lett.113 117202 · doi:10.1103/PhysRevLett.113.117202
[141] Brockmann M, Wouters B, Fioretto D, De Nardis J, Vlijm R and Caux J-S 2017 Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain J. Stat. Mech. P12009 · doi:10.1088/1742-5468/2014/12/p12009
[142] Pozsgay B, Mestyán M, Werner M A, Kormos M, Zaránd G and Takács G 2014 Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble Phys. Rev. Lett.113 117203 · doi:10.1103/PhysRevLett.113.117203
[143] Mestyán M, Pozsgay B, Takács G and Werner M A 2017 Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble J. Stat. Mech. P04001 · Zbl 1456.82298 · doi:10.1088/1742-5468/2015/04/p04001
[144] De Nardis J, Wouters B, Brockmann M and Caux J-S 2014 Solution for an interaction quench in the Lieb-Liniger Bose gas Phys. Rev. A 89 033601 · doi:10.1103/PhysRevA.89.033601
[145] De Nardis J, Piroli L and Caux J-S 2015 Relaxation dynamics of local observables in integrable systems J. Phys. A: Math. Theor.48 43FT01 · Zbl 1330.82041 · doi:10.1088/1751-8113/48/43/43FT01
[146] Alba V and Calabrese P 2017 The quench action approach in finite integrable spin chains J. Stat. Mech. 043105 · Zbl 1456.82215 · doi:10.1088/1742-5468/2016/04/043105
[147] Bertini B, Piroli L and Calabrese P 2017 Quantum quenches in the sinh-Gordon model: steady state and one-point correlation functions J. Stat. Mech. 063102 · Zbl 1456.81226 · doi:10.1088/1742-5468/2016/06/063102
[148] Piroli L, Calabrese P and Essler F H L 2016 Multiparticle bound-state formation following a quantum quench to the one-dimensional Bose gas with attractive interactions Phys. Rev. Lett.116 070408 · doi:10.1103/PhysRevLett.116.070408
[149] Piroli L, Calabrese P and Essler F H L 2016 Quantum quenches to the attractive one-dimensional Bose gas: exact results SciPost Phys.1 001 · doi:10.21468/SciPostPhys.1.1.001
[150] Bucciantini L 2016 Stationary state after a quench to the Lieb-Liniger from rotating BECs J. Stat. Phys.164 621 · Zbl 1348.82052 · doi:10.1007/s10955-016-1535-7
[151] De Nardis J, Panfil M, Gambassi A, Cugliandolo L F, Konik R and Foini L 2017 Probing non-thermal density fluctuations in the one-dimensional Bose gas (arXiv:1704.06649)
[152] De Nardis J and Panfil M 2017 Exact correlations in the Lieb-Liniger model and detailed balance out-of-equilibrium SciPost Phys.1 015 · doi:10.21468/SciPostPhys.1.2.015
[153] Robinson N J, Caux J-S and Konik R M 2016 Motion of a distinguishable impurity in the Bose gas: arrested expansion without a lattice and impurity snaking Phys. Rev. Lett.116 145302 · doi:10.1103/PhysRevLett.116.145302
[154] Robinson N J, Caux J-S and Konik R M 2017 Exact nonequilibrium dynamics of a class of initial states in one-dimensional two-component integrable quantum gases (arXiv:1602.05532)
[155] Karrasch C, Prosen T and Heidrich-Meisner F 2017 Proposal for measuring the finite-temperature Drude weight of integrable systems Phys. Rev. B 95 060406 · doi:10.1103/PhysRevB.95.060406
[156] Mestyán M, Bertini B, Piroli L and Calabrese P 2017 Exact solution for the quench dynamics of a nested integrable system (arXiv:1705.00851)
[157] Ilievski E and De Nardis J 2017 Ballistic transport in the one-dimensional Hubbard model: the hydrodynamic approach (arXiv:1706.05931)
[158] Liao Y, Rittner A S C, Paprotta T, Li W, Partridge G B, Hulet R G, Baur S K and Mueller E J 2010 Spin-imbalance in a one-dimensional Fermi gas Nature467 567 · doi:10.1038/nature09393
[159] Pagano G et al 2014 A one-dimensional liquid of fermions with tunable spin Nat. Phys.10 198 · doi:10.1038/nphys2878
[160] Boll M, Hilker T A, Salomon G, Omran A, Nespolo J, Pollet L, Bloch I and Gross C 2016 Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains Science353 1257 · Zbl 1355.81159 · doi:10.1126/science.aag1635
[161] Parsons M F, Mazurenko A, Chiu C S, Ji G, Greif D and Greiner M 2016 Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model Science353 1253 · Zbl 1355.81027 · doi:10.1126/science.aag1430
[162] Hilker T A, Salomon G, Grusdt F, Omran A, Boll M, Demler E, Bloch I and Gross C 2017 Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators (arXiv:1702.00642)
[163] Eckstein M, Kollar M and Werner P 2010 Interaction quench in the Hubbard model: relaxation of the spectral function and the optical conductivity Phys. Rev. B 81 115131 · doi:10.1103/PhysRevB.81.115131
[164] Schiró M and Fabrizio M 2010 Time-dependent mean field theory for quench dynamics in correlated electron systems Phys. Rev. Lett.105 076401 · doi:10.1103/PhysRevLett.105.076401
[165] Schiró M and Fabrizio M 2011 Quantum Quenches in the Hubbard Model: time dependent mean field theory and the role of quantum fluctuations Phys. Rev. B 83 165105 · doi:10.1103/PhysRevB.83.165105
[166] Queisser F, Krutitsky K V, Navez P and Schutzhold R 2014 Equilibration and prethermalization in the Bose-Hubbard and Fermi-Hubbard models Phys. Rev. A 89 033616 · doi:10.1103/PhysRevA.89.033616
[167] Iyer D, Mondaini R, Will S and Rigol M 2014 Coherent quench dynamics in the one-dimensional Fermi-Hubbard model Phys. Rev. A 90 031602 · doi:10.1103/PhysRevA.90.031602
[168] Riegger L, Orso G and Heidrich-Meisner F 2015 Interaction quantum quenches in the one-dimensional Fermi-Hubbard model with spin imbalance Phys. Rev. A 91 043623 · doi:10.1103/PhysRevA.91.043623
[169] Yin X and Radzihovsky L 2016 Quench dynamics of spin-imbalanced Fermi-Hubbard model in one dimension Phys. Rev. A 94 063637 · doi:10.1103/PhysRevA.94.063637
[170] Schluenzen N, Joost J-P, Heidrich-Meisner F and Bonitz M 2017 Nonequilibrium dynamics in the one-dimensional Fermi-Hubbard model: a comparison of the nonequilibrium Green functions approach and the density matrix renormalization group method Phys. Rev. B 95 165139 · doi:10.1103/PhysRevB.95.165139
[171] Göhmann F and Murakami S 1998 Fermionic representations of integrable lattice systems J. Phys. A: Math. Gen.31 7729 · Zbl 0960.82004 · doi:10.1088/0305-4470/31/38/009
[172] Kumar B 2009 Exact solution of the infinite-U Hubbard problem and other models in one dimension Phys. Rev. B 79 155121 · doi:10.1103/PhysRevB.79.155121
[173] Kumar B 2008 Canonical representation for electrons and its application to the Hubbard model Phys. Rev. B 77 205115 · doi:10.1103/PhysRevB.77.205115
[174] Yang C N 1967 Some exact results for the many-body problem in one dimension with repulsive delta-function interaction Phys. Rev. Lett.19 1312 · Zbl 0152.46301 · doi:10.1103/PhysRevLett.19.1312
[175] Gaudin M 1967 Un système à une dimension de fermions en interaction Phys. Lett. A 24 55 · doi:10.1016/0375-9601(67)90193-4
[176] Izergin A G, Pronko A G and Abarenkova N I 1998 Temperature correlators in the one-dimensional Hubbard model in the strong coupling limit Phys. Lett. A 245 537-47 · doi:10.1016/S0375-9601(98)00442-3
[177] Abarenkova N I, Izergin A G and Pronko A G 1997 Correlators of the densities in the one-dimensional Hubbard model Zap. Nauchn. Sem. POMI249 7-19 · doi:10.1007/BF02680139
[178] Izergin A G and Pronko A G 2017 Temperature correlators in the two-component one-dimensional gas Nucl. Phys. B 520 594-632 · Zbl 0947.82006 · doi:10.1016/S0550-3213(98)00182-5
[179] Ogata M and Shiba H 1990 Bethe-ansatz wave function, momentum distribution and spin correlation in the one-dimensional strongly correlated Hubbard model Phys. Rev. B 41 2326 · doi:10.1103/PhysRevB.41.2326
[180] Mazza P P, Stéphan J M, Canovi E, Alba V, Brockmann M and Haque M 2017 Overlap distributions for quantum quenches in the anisotropic Heisenberg chain J. Stat. Mech. 013104 · Zbl 1456.81465 · doi:10.1088/1742-5468/2016/01/013104
[181] Bertini B, Tartaglia E and Calabrese P in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.