×

Hamiltonian truncation approach to quenches in the Ising field theory. (English) Zbl 1346.82021

Summary: In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the \(1 + 1\) dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

MSC:

82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
82D40 Statistical mechanics of magnetic materials

References:

[1] Calabrese, P.; Cardy, J., Time dependence of correlation functions following a quantum quench, Phys. Rev. Lett., 96, Article 136801 pp. (2006)
[2] Calabrese, P.; Cardy, J., Quantum quenches in extended systems, J. Stat. Mech. Theory Exp., 6, Article 06008 pp. (2007) · Zbl 1456.81358
[3] Kinoshita, T.; Wenger, T.; Weiss, D. S., A quantum Newton’s cradle, Nature, 440, 900-903 (2006)
[4] Hofferberth, S.; Lesanovsky, I.; Fischer, B.; Schumm, T.; Schmiedmayer, J., Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature, 449, 324-327 (2007)
[5] Trotzky, S.; Chen, Y.-A.; Flesch, A.; McCulloch, I. P.; Schollwöck, U.; Eisert, J.; Bloch, I., Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nat. Phys., 8, 325-330 (2012)
[6] Gring, M.; Kuhnert, M.; Langen, T.; Kitagawa, T.; Rauer, B.; Schreitl, M.; Mazets, I.; Smith, D. A.; Demler, E.; Schmiedmayer, J., Relaxation and prethermalization in an isolated quantum system, Science, 337, 1318 (2012)
[7] Langen, T.; Geiger, R.; Kuhnert, M.; Rauer, B.; Schmiedmayer, J., Local emergence of thermal correlations in an isolated quantum many-body system, Nat. Phys., 9, 640-643 (2013)
[8] Meinert, F.; Mark, M. J.; Kirilov, E.; Lauber, K.; Weinmann, P.; Daley, A. J.; Nägerl, H.-C., Quantum quench in an atomic one-dimensional Ising chain, Phys. Rev. Lett., 111, Article 053003 pp. (2013)
[9] Fukuhara, T.; Schauß, P.; Endres, M.; Hild, S.; Cheneau, M.; Bloch, I.; Gross, C., Microscopic observation of magnon bound states and their dynamics, Nature, 502, 76-79 (2013)
[10] Langen, T.; Erne, S.; Geiger, R.; Rauer, B.; Schweigler, T.; Kuhnert, M.; Rohringer, W.; Mazets, I. E.; Gasenzer, T.; Schmiedmayer, J., Experimental observation of a generalized Gibbs ensemble, Science, 348, 207-211 (2015) · Zbl 1355.81184
[11] Kaufman, A. M.; Tai, M. E.; Lukin, A.; Rispoli, M.; Schittko, R.; Preiss, P. M.; Greiner, M., Quantum thermalization through entanglement in an isolated many-body system (2016), ArXiv e-prints
[12] Rigol, M.; Dunjko, V.; Yurovsky, V.; Olshanii, M., Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons, Phys. Rev. Lett., 98, Article 050405 pp. (2007)
[13] Wouters, B.; De Nardis, J.; Brockmann, M.; Fioretto, D.; Rigol, M.; Caux, J.-S., Quenching the anisotropic Heisenberg chain: exact solution and generalized Gibbs ensemble predictions, Phys. Rev. Lett., 113, Article 117202 pp. (2014)
[14] Pozsgay, B.; Mestyán, M.; Werner, M. A.; Kormos, M.; Zaránd, G.; Takács, G., Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble, Phys. Rev. Lett., 113, Article 117203 pp. (2014)
[15] Ilievski, E.; De Nardis, J.; Wouters, B.; Caux, J.-S.; Essler, F. H.L.; Prosen, T., Complete generalized Gibbs ensembles in an interacting theory, Phys. Rev. Lett., 115, Article 157201 pp. (2015)
[16] Ilievski, E.; Medenjak, M.; Prosen, T.; Zadnik, L., Quasilocal charges in integrable lattice systems (2016), ArXiv e-prints · Zbl 1456.81238
[17] Goldstein, G.; Andrei, N., Failure of the local generalized Gibbs ensemble for integrable models with bound states, Phys. Rev. A, 90, Article 043625 pp. (2014)
[18] Pozsgay, B., Failure of the generalized eigenstate thermalization hypothesis in integrable models with multiple particle species, J. Stat. Mech. Theory Exp., 9, Article 09026 pp. (2014) · Zbl 1456.82310
[19] Deutsch, J. M., Quantum statistical mechanics in a closed system, Phys. Rev. A, 43, 2046-2049 (1991)
[20] Srednicki, M., Chaos and quantum thermalization, Phys. Rev. E, 50, 888-901 (1994)
[21] Berges, J.; Borsányi, S.; Wetterich, C., Prethermalization, Phys. Rev. Lett., 93, Article 142002 pp. (2004)
[22] Kollar, M.; Wolf, F. A.; Eckstein, M., Generalized Gibbs ensemble prediction of prethermalization plateaus and their relation to nonthermal steady states in integrable systems, Phys. Rev. B, 84, Article 054304 pp. (2011)
[23] Bertini, B.; Essler, F. H.L.; Groha, S.; Robinson, N. J., Prethermalization and thermalization in models with weak integrability breaking, Phys. Rev. Lett., 115, Article 180601 pp. (2015)
[24] Brandino, G. P.; Caux, J.-S.; Konik, R. M., Glimmers of a quantum KAM theorem: insights from quantum quenches in one-dimensional Bose gases, Phys. Rev. X, 5, Article 041043 pp. (2015)
[25] Kormos, M.; Collura, M.; Takács, G.; Calabrese, P., Real time confinement following a quantum quench to a non-integrable model (2016), ArXiv e-prints
[26] Berges, J., Introduction to nonequilibrium quantum field theory, (Bracco, M. E.; Chiapparini, M.; Ferreira, E.; Kodama, T., American Institute of Physics Conference Series, vol. 739 (2004)), 3-62
[27] Fioretto, D.; Mussardo, G., Quantum quenches in integrable field theories, New J. Phys., 12, Article 055015 pp. (2010) · Zbl 1375.81169
[28] Balasubramanian, V.; Bernamonti, A.; de Boer, J.; Copland, N.; Craps, B.; Keski-Vakkuri, E.; Müller, B.; Schäfer, A.; Shigemori, M.; Staessens, W., Thermalization of strongly coupled field theories, Phys. Rev. Lett., 106, Article 191601 pp. (2011)
[29] Sotiriadis, S.; Fioretto, D.; Mussardo, G., Zamolodchikov-Faddeev algebra and quantum quenches in integrable field theories, J. Stat. Mech. Theory Exp., 2, Article 02017 pp. (2012) · Zbl 1456.81254
[30] Schuricht, D.; Essler, F. H.L., Dynamics in the Ising field theory after a quantum quench, J. Stat. Mech. Theory Exp., 4, Article 04017 pp. (2012)
[31] Mussardo, G., Infinite-time average of local fields in an integrable quantum field theory after a quantum quench, Phys. Rev. Lett., 111, Article 100401 pp. (2013)
[32] Sotiriadis, S.; Takacs, G.; Mussardo, G., Boundary state in an integrable quantum field theory out of equilibrium, Phys. Lett. B, 734, 52-57 (2014)
[33] Bertini, B.; Schuricht, D.; Essler, F. H.L., Quantum quench in the sine-Gordon model, J. Stat. Mech. Theory Exp., 10, 10035 (2014) · Zbl 1456.81047
[34] Delfino, G., Quantum quenches with integrable pre-quench dynamics, J. Phys. A, Math. Gen., 47, 402001 (2014) · Zbl 1300.81027
[35] Essler, F. H.L.; Mussardo, G.; Panfil, M., Generalized Gibbs ensembles for quantum field theories, Phys. Rev. A, 91, Article 051602 pp. (2015)
[36] Schuricht, D., Quantum quenches in integrable systems: constraints from factorisation, J. Stat. Mech. Theory Exp., 11, 11004 (2015) · Zbl 1456.82075
[37] Horváth, D. X.; Sotiriadis, S.; Takács, G., Initial states in integrable quantum field theory quenches from an integral equation hierarchy, Nucl. Phys. B, 902, 508-547 (2016) · Zbl 1332.81120
[38] Cortés Cubero, A.; Mussardo, G.; Panfil, M., Quench dynamics in two-dimensional integrable SUSY models, J. Stat. Mech. Theory Exp., 3, Article 033115 pp. (2016) · Zbl 1456.81425
[39] Bertini, B.; Piroli, L.; Calabrese, P., Quantum quenches in the sinh-Gordon model: steady state and one-point correlation functions, J. Stat. Mech. Theory Exp., 6, Article 063102 pp. (2016) · Zbl 1456.81226
[40] Cortés Cubero, A., Planar quantum quenches: computation of exact time-dependent correlation functions at large \(N (2016)\), ArXiv e-prints · Zbl 1457.82131
[41] Yurov, V. P.; Zamolodchikov, A. B., Truncated-fermionic approach to the critical 2d Ising model with magnetic field, Int. J. Mod. Phys. A, 6, 4557-4578 (1991)
[42] Fonseca, P.; Zamolodchikov, A., Ising field theory in a magnetic field: analytic properties of the free energy, J. Stat. Phys., 111, 527 (2003) · Zbl 1016.82014
[43] Yurov, V. P.; Zamolodchikov, A. B., Truncated comformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A, 5, 3221-3245 (1990)
[44] Lässig, M.; Mussardo, G.; Cardy, J. L., The scaling region of the tricritical Ising model in two dimensions, Nucl. Phys. B, 348, 591-618 (1991)
[45] Feverati, G.; Ravanini, F.; Takács, G., Truncated conformal space at \(c = 1\), nonlinear integral equation and quantization rules for multi-soliton states, Phys. Lett. B, 430, 264-273 (1998)
[46] Coser, A.; Beria, M.; Brandino, G. P.; Konik, R. M.; Mussardo, G., Truncated conformal space approach for 2D Landau-Ginzburg theories, J. Stat. Mech. Theory Exp., 12, 12010 (2014) · Zbl 1456.82727
[47] Bajnok, Z.; Lajer, M., Truncated Hilbert space approach to the 2d \(\phi^4\) theory (2015), ArXiv e-prints
[48] Rychkov, S.; Vitale, L. G., Hamiltonian truncation study of the \(\phi^4\) theory in two dimensions, Phys. Rev. D, 91, Article 085011 pp. (2015)
[49] Rychkov, S.; Vitale, L. G., Hamiltonian truncation study of the \(\phi^4\) theory in two dimensions. II. The \(Z_2\)-broken phase and the Chang duality, Phys. Rev. D, 93, Article 065014 pp. (2016)
[50] Beria, M.; Brandino, G. P.; Lepori, L.; Konik, R. M.; Sierra, G., Truncated conformal space approach for perturbed Wess-Zumino-Witten \(S U(2_k)\) models, Nucl. Phys. B, 877, 457-483 (2013) · Zbl 1284.81249
[51] Konik, R. M.; Pálmai, T.; Takács, G.; Tsvelik, A. M., Studying the perturbed Wess-Zumino-Novikov-Witten \(S U(2)_k\) theory using the truncated conformal spectrum approach, Nucl. Phys. B, 899, 547-569 (2015) · Zbl 1331.81258
[52] Azaria, P.; Konik, R. M.; Lecheminant, P.; Palmai, T.; Takacs, G.; Tsvelik, A. M., Particle formation and ordering in strongly correlated fermionic systems: solving a model of quantum chromodynamics (2016), ArXiv e-prints
[53] Hogervorst, M.; Rychkov, S.; van Rees, B. C., Truncated conformal space approach in \(d\) dimensions: a cheap alternative to lattice field theory?, Phys. Rev. D, 91, Article 025005 pp. (2015)
[54] James, A. J.A.; Konik, R. M., Quantum quenches in two spatial dimensions using chain array matrix product states, Phys. Rev. B, 92, Article 161111 pp. (2015)
[55] Lieb, E.; Schultz, T.; Mattis, D., Two soluble models of an antiferromagnetic chain, Ann. Phys., 16, 407-466 (1961) · Zbl 0129.46401
[56] Pfeuty, P., The one-dimensional Ising model with a transverse field, Ann. Phys., 57, 79-90 (1970)
[57] McCoy, B. M.; Wu, T. T., Two-dimensional Ising field theory in a magnetic field: breakup of the cut in the two-point function, Phys. Rev. D, 18, 1259-1267 (1978)
[58] Bucciantini, L.; Kormos, M.; Calabrese, P., Quantum quenches from excited states in the Ising chain, J. Phys. A, Math. Gen., 47, 175002 (2014) · Zbl 1291.82067
[59] Sotiriadis, S.; Calabrese, P.; Cardy, J., Quantum quench from a thermal initial state, Europhys. Lett., 87, 20002 (2009)
[60] Calabrese, P.; Essler, F. H.L.; Fagotti, M., Quantum quench in the transverse-field Ising chain, Phys. Rev. Lett., 106, Article 227203 pp. (2011)
[61] Calabrese, P.; Essler, F. H.L.; Fagotti, M., Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators, J. Stat. Mech. Theory Exp., 7, Article 07016 pp. (2012)
[62] Calabrese, P.; Essler, F. H.L.; Fagotti, M., Quantum quenches in the transverse field Ising chain: II. Stationary state properties, J. Stat. Mech. Theory Exp., 7, Article 07022 pp. (2012)
[63] Rigol, M.; Dunjko, V.; Olshanii, M., Thermalization and its mechanism for generic isolated quantum systems, Nature, 452, 854-858 (2008)
[64] Brockmann, M.; Wouters, B.; Fioretto, D.; De Nardis, J.; Vlijm, R.; Caux, J.-S., Quench action approach for releasing the Néel state into the spin-1/2 XXZ chain, J. Stat. Mech. Theory Exp., 12, 12009 (2014) · Zbl 1456.82233
[65] Mestyán, M.; Pozsgay, B.; Takács, G.; Werner, M. A., Quenching the XXZ spin chain: quench action approach versus generalized Gibbs ensemble, J. Stat. Mech. Theory Exp., 4, Article 04001 pp. (2015) · Zbl 1456.82298
[66] Feverati, G.; Graham, K.; Pearce, P. A.; Toth, G. Z.; Watts, G., A renormalisation group for TCSA (2006), ArXiv e-prints
[67] Konik, R. M.; Adamov, Y., Numerical renormalization group for continuum one-dimensional systems, Phys. Rev. Lett., 98, Article 147205 pp. (2007)
[68] Silva, A., Statistics of the work done on a quantum critical system by quenching a control parameter, Phys. Rev. Lett., 101, Article 120603 pp. (2008)
[69] Rossini, D.; Silva, A.; Mussardo, G.; Santoro, G. E., Effective thermal dynamics following a quantum quench in a spin chain, Phys. Rev. Lett., 102, Article 127204 pp. (2009)
[70] Rossini, D.; Suzuki, S.; Mussardo, G.; Santoro, G. E.; Silva, A., Long time dynamics following a quench in an integrable quantum spin chain: local versus nonlocal operators and effective thermal behavior, Phys. Rev. B, 82, Article 144302 pp. (2010)
[71] Rieger, H.; Iglói, F., Semiclassical theory for quantum quenches in finite transverse Ising chains, Phys. Rev. B, 84, Article 165117 pp. (2011)
[72] Kormos, M.; Zaránd, G., Quantum quenches in the sine-Gordon model: a semiclassical approach, Phys. Rev. E, 93, Article 062101 pp. (2015)
[73] Evangelisti, S., Semi-classical theory for quantum quenches in the O(3) non-linear sigma model, J. Stat. Mech. Theory Exp., Article P04003 pp. (2013) · Zbl 1456.81189
[74] Gritsev, V.; Demler, E.; Lukin, M.; Polkovnikov, A., Spectroscopy of collective excitations in interacting low-dimensional many-body systems using quench dynamics, Phys. Rev. Lett., 99, Article 200404 pp. (2007)
[75] Takács, G., Form factor perturbation theory from finite volume, Nucl. Phys. B, 825, 466-481 (2010) · Zbl 1196.81128
[76] Schweigler, T.; Kasper, V.; Erne, S.; Rauer, B.; Langen, T.; Gasenzer, T.; Berges, J.; Schmiedmayer, J., On solving the quantum many-body problem (2015), ArXiv e-prints
[77] Bugrij, A. I., The correlation function in two-dimensional Ising model on the finite size lattice. 1, Theor. Math. Phys., 127, 528-548 (2001) · Zbl 0995.82020
[78] Bugrij, A. I., Form factor representation of the correlation function of the two dimensional Ising model on a cylinder, (Pakuliak, S.; von Gehlen, G., Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory. Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science Series, vol. 35 (2001)) · Zbl 0995.82020
[79] Giokas, P.; Watts, G., The renormalisation group for the truncated conformal space approach on the cylinder (2011), ArXiv e-prints
[80] Szécsényi, I. M.; Takács, G.; Watts, G. M.T., One-point functions in finite volume/temperature: a case study, J. High Energy Phys., 8, Article 94 pp. (2013)
[81] Rutkevich, S. B., Large-\(n\) excitations in the ferromagnetic Ising field theory in a weak magnetic field: mass spectrum and decay widths, Phys. Rev. Lett., 95, Article 250601 pp. (2005)
[82] Fonseca, P.; Zamolodchikov, A., Ising spectroscopy I: mesons at \(T < T_c (2006)\), ArXiv e-prints
[83] Rutkevich, S. B., Formfactor perturbation expansions and confinement in the Ising field theory, J. Phys. A, Math. Gen., 42, 304025 (2009) · Zbl 1179.82039
[84] Lencsés, M.; Takács, G., Confinement in the q-state Potts model: an RG-TCSA study, J. High Energy Phys., 9, Article 146 pp. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.