×

A mathematical theory of gapless edges of 2d topological orders. I. (English) Zbl 1435.81184

Summary: This is the first part of a two-part work on a unified mathematical theory of gapped and gapless edges of 2d topological orders. We analyze all the possible observables on the 1+1D world sheet of a chiral gapless edge of a 2d topological order, and show that these observables form an enriched unitary fusion category, the Drinfeld center of which is precisely the unitary modular tensor category associated to the bulk. This mathematical description of a chiral gapless edge automatically includes that of a gapped edge (i.e. a unitary fusion category) as a special case. Therefore, we obtain a unified mathematical description and a classification of both gapped and chiral gapless edges of a given 2d topological order. In the process of our analysis, we encounter an interesting and reoccurring phenomenon: spatial fusion anomaly, which leads us to propose the Principle of Universality at RG fixed points for all quantum field theories. Our theory also implies that all chiral gapless edges can be obtained from a so-called topological Wick rotations. This fact leads us to propose, at the end of this work, a surprising correspondence between gapped and gapless phases in all dimensions.
For Part II, see [the authors, Nucl. Phys., B 966, Article ID 115384, 60 p. (2021; Zbl 1509.81582)].

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T45 Topological field theories in quantum mechanics
81T17 Renormalization group methods applied to problems in quantum field theory
81V27 Anyons

Citations:

Zbl 1509.81582

References:

[1] Affleck, I.; Ludwig, AWW, Exact conformal-field-theory results on the multichannel Kondo effect: Single-fermion Green’s function, self-energy and resistivity, Phys. Rev., B 48, 7297 (1993)
[2] Affleck, I.; Ludwig, AWW, The Fermi edge singularity and boundary condition changing operators, J. Phys., A 27, 5375 (1994) · Zbl 0850.82051
[3] Ai, YH; Kong, L.; Zheng, H., Topological orders and factorization homology, Adv. Theor. Math. Phys., 21, 1845 (2017) · Zbl 1387.81296
[4] J. Bockenhauer and D.E. Evans, On α induction, chiral generators and modular invariants for subfactors, Commun. Math. Phys.208 (1999) 429 [math/9904109] [INSPIRE]. · Zbl 0948.46048
[5] S.B. Bravyi and A.Y. Kitaev, Quantum codes on a lattice with boundary, quant-ph/9811052. · Zbl 1227.81113
[6] M. Barkeshli and C. Nayak, Superconductivity Induced Topological Phase Transition at the Edge of Even Denominator Fractional Quantum Hall States, arXiv:1507.06305 [INSPIRE].
[7] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys., B 241, 333 (1984) · Zbl 0661.17013
[8] Bais, FA; Slingerland, JK, Condensate induced transitions between topologically ordered phases, Phys. Rev., B 79, 045316 (2009)
[9] Cano, J.; Cheng, M.; Mulligan, M.; Nayak, C.; Plamadeala, E.; Yard, J., Bulk-edge correspondence in p2 − 1q-dimensional Abelian topological phases, Phys. Rev., B 89, 115116 (2014)
[10] Cano, J.; Cheng, M.; Barkeshli, M.; Nayak, C.; Clarke, DJ, Chirality-Protected Majorana Zero Modes at the Gapless Edge of Abelian Quantum Hall States, Phys. Rev., B 92, 195152 (2015)
[11] Cappelli, A.; Zemba, GR, Modular invariant partition functions in the quantum Hall effect, Nucl. Phys., B 490, 595 (1997) · Zbl 0925.81439
[12] Cardy, JL, Conformal Invariance and Surface Critical Behavior, Nucl. Phys., B 240, 514 (1984)
[13] Cardy, JL, Boundary Conditions, Fusion Rules and the Verlinde Formula, Nucl. Phys., B 324, 581 (1989)
[14] Cardy, JL; Lewellen, DC, Bulk and boundary operators in conformal field theory, Phys. Lett., B 259, 274 (1991)
[15] Carpi, S.; Kawahigashi, Y.; Longo, R.; Weiner, M., From vertex operator algebras to conformal nets and back, Mem. Amer. Math. Soc., 254, 1 (2018) · Zbl 1434.17001
[16] W.-Q. Chen, C.-M. Jian, L. Kong, Y.-Z. You and H. Zheng, A topological phase transition on the edge of the 2d ℤ_2topological order, arXiv:1903.12334 [INSPIRE].
[17] Davydov, A., Centre of an algebra, Adv. Math., 225, 319 (2010) · Zbl 1227.18003
[18] Davydov, A.; Kong, L.; Runkel, I., Functoriality of the center of an algebra, Adv. Math., 285, 811 (2015) · Zbl 1345.18004
[19] Davydov, A.; Müger, M.; Nikshych, D.; Ostrik, V., The Witt group of nondegenerate braided fusion categories, J. Reine Angew. Math., 677, 135 (2013) · Zbl 1271.18008
[20] C. Dong and G. Mason, Holomorphic vertex operator algebras of small central charge, Pacific J. Math.213 (2004) 253 [math/0203005]. · Zbl 1100.17010
[21] J. van Ekeren, S. Möller and N.R. Scheithauer, Construction and classification of holomorphic vertex operator algebras, arXiv:1507.08142. · Zbl 1447.81181
[22] Etingof, P.; Nikshych, D.; Ostrik, V., Weakly group-theoretical and solvable fusion categories, Adv. Math., 226, 176 (2010) · Zbl 1210.18009
[23] Felder, G.; Fröhlich, J.; Fuchs, J.; Schweigert, C., Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology, Compos. Math., 131, 189 (2002) · Zbl 1002.81045
[24] J. Fjelstad, J. Fuchs, I. Runkel and C. Schweigert, TFT construction of RCFT correlators.V: proof of modular invariance and factorisation, Theory Appl. Categ.16 (2006) 342 [hep-th/0503194]. · Zbl 1151.81038
[25] Fjelstad, J.; Fuchs, J.; Runkel, I.; Schweigert, C., Uniqueness of open/closed rational CFT with given algebra of open states, Adv. Theor. Math. Phys., 12, 1283 (2008) · Zbl 1151.81034
[26] Francesco, PD; Mathieu, P.; Sénéchal, D., Conformal Field Theory (1996), Heidelberg Germany: Springer, Heidelberg Germany
[27] Fredenhagen, K.; Rehren, K. H.; Schroer, B., Superselection sectors with braid group statistics and exchange algebras, Communications In Mathematical Physics, 125, 2, 201-226 (1989) · Zbl 0682.46051
[28] Fröhlich, J.; Gabbiani, F., Braid statistics in local quantum theory, Rev. Math. Phys., 2, 251 (1991) · Zbl 0723.57002
[29] Frenkel, IB; Huang, Y-Z; Lepowsky, J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, 1 (1993) · Zbl 0789.17022
[30] Fröhlich, Jürg; Fuchs, Jürgen; Runkel, Ingo; Schweigert, Christoph, Correspondences of ribbon categories, Advances in Mathematics, 199, 1, 192-329 (2006) · Zbl 1087.18006
[31] Fröhlich, J.; Fuchs, J.; Runkel, I.; Schweigert, C., Duality and defects in rational conformal field theory, Nucl. Phys., B 763, 354 (2007) · Zbl 1116.81060
[32] Frenkel, IB; Lepowsky, J.; Meurman, A., A natural representation of the Fischer-Griess monster with the modular function J as character, Proc. Natl. Acad. Sci. U.S.A., 81, 3256 (1984) · Zbl 0543.20016
[33] Fuchs, Jürgen; Runkel, Ingo; Schweigert, Christoph, TFT construction of RCFT correlators I: partition functions, Nuclear Physics B, 646, 3, 353-497 (2002) · Zbl 0999.81079
[34] Fuchs, J.; Runkel, I.; Schweigert, C., TFT construction of RCFT correlators IV: Structure constants and correlation functions, Nucl. Phys., B 715, 539 (2005) · Zbl 1151.81384
[35] J. Fuchs and C. Schweigert, Category theory for conformal boundary conditions, Fields Institute Commun.39 (2003) 25 [math/0106050]. · Zbl 1084.17012
[36] Fuchs, J.; Schweigert, C., A note on permutation twist defects in topological bilayer phases, Lett. Math. Phys., 104, 1385 (2014) · Zbl 1305.57048
[37] Fuchs, J.; Schweigert, C.; Valentino, A., Bicategories for boundary conditions and for surface defects in 3 − D TFT, Commun. Math. Phys., 321, 543 (2013) · Zbl 1269.81169
[38] Galindo, C.; Hong, S-M; Rowell, E., Generalized and quasi-localizations of braided group representations, Int. Math. Res. Not., 2013, 693 (2013) · Zbl 1318.20037
[39] Gannon, T.; Jones, C., Vanishing of Categorical Obstructions for Permutation Orbifolds, Commun. Math. Phys., 369, 245 (2019) · Zbl 1442.18040
[40] T. Gannon, private communication.
[41] Greiter, M.; Wen, X-G; Wilczek, F., Paired Hall state at half filling, Phys. Rev. Lett., 66, 3205 (1991)
[42] Gui, B., Unitarity of the Modular Tensor Categories Associated to Unitary Vertex Operator Algebras, I, Commun. Math. Phys., 366, 333 (2019) · Zbl 1425.17039
[43] Gui, B., Unitarity of the Modular Tensor Categories Associated to Unitary Vertex Operator Algebras, I, Commun. Math. Phys., 366, 333 (2019) · Zbl 1425.17039
[44] Gui, B., Energy bounds condition for intertwining operators of type B, C and G_2unitary affine vertex operator algebras, Trans. Am. Math. Soc., 372, 7371 (2019) · Zbl 1464.17030
[45] Halperin, BI, Quantized Hall conductance, current carrying edge states and the existence of extended states in a two-dimensional disordered potential, Phys. Rev., B 25, 2185 (1982)
[46] Hu, P.; Kriz, I., Closed and open conformal field theories and their anomalies, Commun. Math. Phys., 254, 221 (2005) · Zbl 1091.81073
[47] Y.-Z. Huang, Progress in Mathematics. Vol. 148: Two-dimensional conformal geometry and vertex operator algebras, Birkh¨auser, Boston U.S.A. (1997). · Zbl 0884.17021
[48] Y.-Z. Huang, A theory of tensor products for module categories for a vertex operator algebra. IV, J. Pure Appl. Algebra100 (1995) 17 [q-alg/9505019]. · Zbl 0854.17033
[49] Y.-Z. Huang, Riemann surfaces with edges and the theory of vertex operator algebras, in Fields Institute Communications. Vol. 39: Vertex Operator Algebras in Mathematics and Physics, S. Berman, Y. Billig, Y.-Z. Huang and J. Lepowsky eds., AMS Press, Providence U.S.A. (2003), pg. 109.
[50] Huang, Y-Z, Differential equations and intertwining operators, Commun. Contemp. Math., 7, 375 (2005) · Zbl 1070.17012
[51] Huang, Y-Z, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math., 10, 103 (2008) · Zbl 1180.17008
[52] Huang, Y-Z, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10, 871 (2008) · Zbl 1169.17019
[53] Huang, Y-Z; Kirillov, A.; Lepowsky, J., Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys., 337, 1143 (2015) · Zbl 1388.17014
[54] Y.-Z. Huang and L. Kong, Open string vertex algebras, tensor categories and operads, Commun. Math. Phys.250 (2004) 433 [math/0308248] [INSPIRE]. · Zbl 1083.17010
[55] Y.-Z. Huang and L. Kong, Full field algebras, Commun. Math. Phys.272 (2007) 345 [math/0511328] [INSPIRE]. · Zbl 1153.17012
[56] Y.-Z. Huang and L. Kong, Modular invariance for conformal full field algebras, Trans. Am. Math. Soc.362 (2010) 3027 [math/0609570]. · Zbl 1211.17025
[57] Y.-Z. Huang and J. Lepowsky, Tensor products of modules for a vertex operator algebra and vertex tensor categories, in: Lie Theory and Geometry, in honor of Bertram Kostant, R. Brylinski, J.-L. Brylinski, V. Guillemin and V. Kac eds., Birkhäuser, Boston U.S.A. (1994), pg. 349. · Zbl 0848.17031
[58] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I, Selecta Math.1 (1995) 699 [hep-th/9309076]. · Zbl 0854.17032
[59] Kawahigashi, Yasuyuki; Longo, Roberto; Müger, Michael, Multi-Interval Subfactors and Modularity¶of Representations in Conformal Field Theory, Communications in Mathematical Physics, 219, 3, 631-669 (2001) · Zbl 1016.81031
[60] G.M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ.10 (2005)1. · Zbl 1086.18001
[61] A. Kirillov Jr. and V. Ostrik, On q-analog of McKay correspondence and ADE classification of sl_2conformal field theories, Adv. Math.171 (2002) 183 [math/0101219]. · Zbl 1024.17013
[62] A. Kitaev, Anyons in an exactly solved model and beyond, Annals Phys.321 (2006) 2 [cond-mat/0506438] [INSPIRE]. · Zbl 1125.82009
[63] A.Y. Kitaev, http://online.kitp.ucsb.edu/online/topomat11/kitaev/.
[64] Kitaev, A.; Kong, L., Models for Gapped Boundaries and Domain Walls, Commun. Math. Phys., 313, 351 (2012) · Zbl 1250.81141
[65] L. Kong, Full field algebras, operads and tensor categories, Adv. Math.213 (2007) 271 [math/0603065] [INSPIRE]. · Zbl 1115.18002
[66] L. Kong, Open-closed field algebras, Commun. Math. Phys.280 (2008) 207 [math/0610293] [INSPIRE]. · Zbl 1173.17021
[67] L. Kong, Cardy condition for open-closed field algebras, Commun. Math. Phys.283 (2008) 25 [math/0612255] [INSPIRE]. · Zbl 1156.81023
[68] Kong, L., Conformal field theory and a new geometry, Proc. Symp. Pure Math., 83, 199 (2011) · Zbl 1248.81199
[69] Kong, L., Anyon condensation and tensor categories, Nucl. Phys., B 886, 436 (2014) · Zbl 1325.81156
[70] Kong, L.; Runkel, I., Morita classes of algebras in modular tensor categories, Adv. Math., 219, 1548 (2008) · Zbl 1156.18003
[71] L. Kong and I. Runkel, Cardy algebras and sewing constraints. I., Commun. Math. Phys.292 (2009) 871 [arXiv:0807.3356] [INSPIRE]. · Zbl 1214.81251
[72] L. Kong and I. Runkel, Algebraic Structures in Euclidean and Minkowskian Two-Dimensional Conformal Field Theory, in Noncommutative Structure in Mathematics and Physics, Brussels Belgium (2008) [arXiv:0902.3829] [INSPIRE].
[73] L. Kong and X.-G. Wen, Braided fusion categories, gravitational anomalies and the mathematical framework for topological orders in any dimensions, arXiv:1405.5858 [INSPIRE].
[74] L. Kong, X.-G. Wen and H. Zheng, Boundary-bulk relation for topological orders as the functor mapping higher cate-gories to their centers, arXiv:1502.01690.
[75] Kong, L.; Wen, X-G; Zheng, H., Boundary-bulk relation in topological orders, Nucl. Phys., B 922, 62 (2017) · Zbl 1373.82093
[76] L. Kong, W. Yuan and H. Zheng, Pointed Drinfeld center functor, arXiv:1912.13168 [INSPIRE]. · Zbl 1460.81084
[77] Kong, L.; Zheng, H., The center functor is fully faithful, Adv. Math., 339, 749 (2018) · Zbl 1419.18013
[78] Kong, L.; Zheng, H., Drinfeld center of enriched monoidal categories, Adv. Math., 323, 411 (2018) · Zbl 1387.18018
[79] Kong, L.; Zheng, H., Gapless edges of 2d topological orders and enriched monoidal categories, Nucl. Phys., B 927, 140 (2018) · Zbl 1380.81335
[80] L. Kong and H. Zheng, A mathematical theory of gapless edges of 2d topological orders II, arXiv:1912.01760 [INSPIRE]. · Zbl 1380.81335
[81] C.-H. Lam and X. Lin A Holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra F_4,6A_2,2 , J. Pure App. Algebra224 (2020) 1241 [arXiv:1612.08123]. · Zbl 1469.17026
[82] Lan, T.; Wen, X-G, Topological quasiparticles and the holographic bulk-edge relation in p2 − 1q-dimensional string-net models, Phys. Rev., B 90, 115119 (2014)
[83] T. Lan, J.C. Wang and X.-G. Wen, Gapped Domain Walls, Gapped Boundaries and Topological Degeneracy, Phys. Rev. Lett.114 (2015) 076402 [arXiv:1408.6514] [INSPIRE].
[84] M. A. Levin, Protected boundary modes without symmetry, Phys. Rev.X 3 (2013) 021009 [arXiv:1301.7355].
[85] M.A. Levin and X.-G. Wen, String net condensation: A Physical mechanism for topological phases, Phys. Rev.B 71 (2005) 045110 [cond-mat/0404617] [INSPIRE].
[86] Lepowsky, James; Li, Haisheng, Introduction to Vertex Operator Algebras and Their Representations (2004), Boston, MA: Birkhäuser Boston, Boston, MA · Zbl 1055.17001
[87] Lewellen, DC, Sewing constraints for conformal field theories on surfaces with boundaries, Nucl. Phys., B 372, 654 (1992)
[88] Longo, R.; Rehren, K-H, Nets of subfactors, Rev. Math. Phys., 7, 567 (1995) · Zbl 0836.46055
[89] Moore, GW; Read, N., Nonabelions in the fractional quantum Hall effect, Nucl. Phys., B 360, 362 (1991)
[90] Moore, GW; Seiberg, N., Classical and Quantum Conformal Field Theory, Commun. Math. Phys., 123, 177 (1989) · Zbl 0694.53074
[91] Morrison, S.; Penneys, D., Monoidal categories enriched in braided monoidal categories, Int. Math. Res. Not., 2019, 3527 (2019) · Zbl 1430.18008
[92] M. Müger, From Subfactors to Categories and Topology II: The quantum double of tensor categories and subfactors, J. Pure Appl. Algebra180 (2003) 159 [math/0111205]. · Zbl 1033.18003
[93] Nayak, C.; Simon, SH; Stern, A.; Freedman, M.; Das Sarma, S., Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys., 80, 1083 (2008) · Zbl 1205.81062
[94] Niu, Q.; Thouless, DJ; Wu, Y-S, Quantized hall conductance as a topological invariant, Phys. Rev., B 31, 3372 (1985)
[95] Wen, XG; Niu, Q., Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces, Phys. Rev., B 41, 9377 (1990)
[96] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups8 (2003) 177 [math/0111139]. · Zbl 1044.18004
[97] Rehren, K-H, Chiral observables and modular invariants, Commun. Math. Phys., 208, 689 (2000) · Zbl 1040.81084
[98] K.-H. Rehren, Canonical tensor product subfactors, Commun. Math. Phys.211 (2000) 395 [math/9911149] [INSPIRE]. · Zbl 1021.46046
[99] Ryu, S.; Zhang, S-C, Interacting topological phases and modular invariance, Phys. Rev., B 85, 245132 (2012)
[100] G. Segal, The definition of conformal field theory, in London Mathematical Society Lecture Note Series. Vol. 308: Topology, geometry and quantum field theory, Cambridge University Press, Cambridge U.K. (2004), pg. 421. · Zbl 1372.81138
[101] Tao, R.; Wu, Y-S, Gauge invariance and fractional quantum Hall effect, Phys. Rev., B 30, 1097 (1984)
[102] Tener, JE; Wang, Z., On classification of extremal non-holomorphic conformal field theories, J. Phys., A 50, 115204 (2017) · Zbl 1362.81086
[103] V.G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter, New York U.S.A. (1994). · Zbl 0812.57003
[104] Vafa, C., Conformal Theories and Punctured Surfaces, Phys. Lett., B 199, 195 (1987)
[105] Wen, XG, Chiral Luttinger Liquid and the Edge Excitations in the Fractional Quantum Hall States, Phys. Rev., B 41, 12838 (1990)
[106] Wen, XG, NonAbelian statistics in the fractional quantum Hall states, Phys. Rev. Lett., 66, 802 (1991) · Zbl 0968.81553
[107] X.-G. Wen, Topological orders and edge excitations in FQH states, Adv. Phys.44 (1995) 405 [cond-mat/9506066] [INSPIRE].
[108] Wen, X-G, Zoo of quantum-topological phases of matter, Rev. Mod. Phys., 89, 41004 (2017)
[109] X.-G. Wen, Choreographed entanglement dances: Topological states of quantum matter, Science363 (2019) eaal3099.
[110] X.-G. Wen and Y.-S. Wu, Chiral Operator Product Algebra Hidden in Certain Fractional Quantum Hall Wave Functions, Nucl. Phys.B 419 (1994) 455 [cond-mat/9310027] [INSPIRE]. · Zbl 0990.81789
[111] X.-G. Wen, Y.-S. Wu and Y. Hatsugai, Chiral operator product algebra and edge excitations of a fractional quantum Hall droplet, Nucl. Phys.B 422 (1994) 476 [cond-mat/9311038] [INSPIRE]. · Zbl 0990.81790
[112] Zhu, Y-C, Modular invariance of vertex operator algebras, J. Am. Math. Soc., 9, 237 (1996) · Zbl 0854.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.