×

Construction and classification of holomorphic vertex operator algebras. (English) Zbl 1447.81181

Summary: “We develop an orbifold theory for finite, cyclic groups acting on holomorphic vertex operator algebras. Then we show that Schellekens’ classification of \(V_1\)-structures of meromorphic conformal field theories of central charge 24 is a theorem on vertex operator algebras. Finally, we use these results to construct some new holomorphic vertex operator algebras of central charge 24 as lattice orbifolds.”
The very detailed introduction of this interesting article is highly recommended for reading!

MSC:

17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] B. Bakalov and V. G. Kac, Twisted modules over lattice vertex algebras, Lie theory and its applications in physics V, World Scientific, Hackensack (2004), 3-26. · Zbl 1229.17028
[2] R. E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA 83 (1986), no. 10, 3068-3071. · Zbl 0613.17012
[3] R. E. Borcherds, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), no. 2, 405-444. · Zbl 0799.17014
[4] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491-562. · Zbl 0919.11036
[5] S. Carnahan, Generalized moonshine IV: Monstrous Lie algebras, preprint (2016),
[6] S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator subalgebras, preprint (2016), .
[7] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren Math. Wiss. 290, Springer, New York 1999. · Zbl 0915.52003
[8] C. Dong, Representations of the moonshine module vertex operator algebra, Mathematical aspects of conformal and topological field theories and quantum groups (South Hadley 1992), Contemp. Math. 175, American Mathematical Society, Providence (1994), 27-36. · Zbl 0808.17013
[9] C. Dong, X. Jiao and F. Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), no. 12, 6441-6469. · Zbl 1337.17018
[10] C. Dong and J. Lepowsky, Generalized vertex algebras and relative vertex operators, Progr. Math. 112, Birkhäuser, Boston 1993. · Zbl 0803.17009
[11] C. Dong and J. Lepowsky, The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra 110 (1996), no. 3, 259-295. · Zbl 0862.17021
[12] C. Dong, H. Li and G. Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1-56. · Zbl 1061.17025
[13] C. Dong, X. Lin and S.-H. Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121-2166. · Zbl 1377.17025
[14] C. Dong and G. Mason, On quantum Galois theory, Duke Math. J. 86 (1997), no. 2, 305-321. · Zbl 0890.17031
[15] C. Dong and G. Mason, Holomorphic vertex operator algebras of small central charge, Pacific J. Math. 213 (2004), no. 2, 253-266. · Zbl 1100.17010
[16] C. Dong and G. Mason, Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. IMRN 2004 (2004), no. 56, 2989-3008. · Zbl 1106.17032
[17] C. Dong, L. Ren and F. Xu, On orbifold theory, Adv. Math. 321 (2017), 1-30. · Zbl 1419.17031
[18] V. Drinfeld, S. Gelaki, D. Nikshych and V. Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no. 1, 1-119. · Zbl 1201.18005
[19] I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Pure Appl. Math. 134, Academic Press, Boston 1988. · Zbl 0674.17001
[20] I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), no. 1, 123-168. · Zbl 0848.17032
[21] V. Gritsenko, 24 faces of the Borcherds modular form \Phi_{12}, preprint (2012), .
[22] G. Höhn and N. R. Scheithauer, A generalized Kac-Moody algebra of rank 14, J. Algebra 404 (2014), 222-239. · Zbl 1365.17017
[23] Y.-Z. Huang, Generalized rationality and a “Jacobi identity” for intertwining operator algebras, Selecta Math. (N.S.) 6 (2000), no. 3, 225-267. · Zbl 1013.17026
[24] Y.-Z. Huang, Differential equations and intertwining operators, Commun. Contemp. Math. 7 (2005), no. 3, 375-400. · Zbl 1070.17012
[25] Y.-Z. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. S1, 871-911. · Zbl 1169.17019
[26] Y.-Z. Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), no. 1, 103-154. · Zbl 1180.17008
[27] V. G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge 1990. · Zbl 0716.17022
[28] M. Krauel and G. Mason, Vertex operator algebras and weak Jacobi forms, Internat. J. Math. 23 (2012), no. 6, Article ID 1250024. · Zbl 1293.17035
[29] C.-H. Lam and X. Lin, A Holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra F_{4,6}A_{2,2}, preprint (2016), .
[30] C. H. Lam and H. Shimakura, A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has type A_{6,7}, Lett. Math. Phys. 106 (2016), no. 11, 1575-1585. · Zbl 1418.17062
[31] C. H. Lam and H. Shimakura, Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms, Comm. Math. Phys. 342 (2016), no. 3, 803-841. · Zbl 1366.17026
[32] C. H. Lam and H. Yamauchi, On the structure of framed vertex operator algebras and their pointwise frame stabilizers, Comm. Math. Phys. 277 (2008), no. 1, 237-285. · Zbl 1137.17024
[33] S. MacLane, Cohomology theory of Abelian groups, Proceedings of the international congress of mathematicians. Vol. 2 (Cambridge 1950), American Mathematical Society, Providence (1952), 8-14. · Zbl 0049.01401
[34] M. Miyamoto, A modular invariance on the theta functions defined on vertex operator algebras, Duke Math. J. 101 (2000), no. 2, 221-236. · Zbl 0988.17021
[35] M. Miyamoto, A \mathbb{Z}_3-orbifold theory of lattice vertex operator algebra and \mathbb{Z}_3-orbifold constructions, Symmetries, integrable systems and representations, Springer Proc. Math. Stat. 40, Springer, Heidelberg (2013), 319-344. · Zbl 1287.17049
[36] M. Miyamoto, C_2-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), no. 3, 1279-1286. · Zbl 1327.17025
[37] M. Miyamoto and K. Tanabe, Uniform product of A_{g,n}(V) for an orbifold model V and G-twisted Zhu algebra, J. Algebra 274 (2004), no. 1, 80-96. · Zbl 1046.17009
[38] P. S. Montague, Conjectured Z_2-orbifold constructions of self-dual conformal field theories at central charge 24—the neighborhood graph, Lett. Math. Phys. 44 (1998), no. 2, 105-120. · Zbl 0924.17019
[39] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Math. USSR Izv. 14 (1980), 103-167. · Zbl 0427.10014
[40] D. Sagaki and H. Shimakura, Application of a \mathbb{Z}_3-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1621-1646. · Zbl 1369.17025
[41] N. R. Scheithauer, The Weil representation of {\rm SL}_2(\mathbb{Z}) and some applications, Int. Math. Res. Not. IMRN 2009 (2009), no. 8, 1488-1545. · Zbl 1244.11043
[42] A. N. Schellekens, Meromorphic c=24 conformal field theories, Comm. Math. Phys. 153 (1993), no. 1, 159-185. · Zbl 0782.17014
[43] H. Yamauchi, Module categories of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra 189 (2004), no. 1-3, 315-328. · Zbl 1052.17017
[44] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237-302. · Zbl 0854.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.