×

On classification of extremal non-holomorphic conformal field theories. (English) Zbl 1362.81086

Summary: Rational chiral conformal field theories are organized according to their genus, which consists of a modular tensor category \(\mathcal{C}\) and a central charge \(c\). A long-term goal is to classify unitary rational conformal field theories based on a classification of unitary modular tensor categories. We conjecture that for any unitary modular tensor category \(\mathcal{C}\), there exists a unitary chiral conformal field theory \(\mathcal{V}\) so that its modular tensor category \({{\mathcal{C}}_{\mathcal{V}}}\) is \(\mathcal{C}\). In this paper, we initiate a mathematical program in and around this conjecture. We define a class of extremal vertex operator algebras with minimal conformal dimensions as large as possible for their central charge, and non-trivial representation theory. We show that there are finitely many different characters of extremal vertex operator algebras \(\mathcal{V}\) possessing at most three different irreducible modules. Moreover, we list all of the possible characters for such vertex operator algebras with \(c\leqslant 48\) .

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
17B69 Vertex operators; vertex operator algebras and related structures
17B81 Applications of Lie (super)algebras to physics, etc.

References:

[1] Bantay P and Gannon T 2007 Vector-valued modular functions for the modular group and the hypergeometric equation Commun. Number Theory Phys.1 651-80 · Zbl 1215.11041 · doi:10.4310/CNTP.2007.v1.n4.a2
[2] Bruillard P, Ng S-H, Rowell E C and Wang Z 2016 Rank-finiteness for modular categories J. Am. Math. Soc.29 857-81 · Zbl 1344.18008 · doi:10.1090/jams/842
[3] Cano J, Cheng M, Mulligan M, Nayak C, Plamadeala E and Yard J 2014 Bulk-edge correspondence in (2 + 1)-dimensional abelian topological phases Phys. Rev. B 89 115116 · doi:10.1103/PhysRevB.89.115116
[4] Carpi S, Kawahigashi Y, Longo R and Weiner M 2015 From vertex operator algebras to conformal nets and back Mem. Amer. Math. Soc. at press (arXiv:1503.01260 [math.OA])
[5] Freedman M, Kitaev A, Larsen M and Wang Z 2003 Topological quantum computation Bull. Am. Math. Soc.40 31-8 · Zbl 1019.81008 · doi:10.1090/S0273-0979-02-00964-3
[6] Gannon T 2014 The theory of vector-valued modular forms for the modular group 2014 Conformal Field Theory, Automorphic Forms and Related Topics (Berlin: Springer) pp 247-86 · Zbl 1377.11055
[7] Gannon T 2016 Vector-valued modular forms and modular tensor categories Talk at Modular Categories – their Representations, Classification, and Applications (Oaxaca, Mexico, 14-19 August 2016)
[8] Gaberdiel M R, Hampapura H R and Mukhi S 2016 Cosets of meromorphic CFTs and modular differential equations J. High Energy Phys.JHEP04(2016) 156 · Zbl 1388.81662 · doi:10.1007/JHEP04(2016)156
[9] Hampapura H R and Mukhi S 2016 On 2d conformal field theories with two characters J. High Energy Phys.JHEP01(2016) 005 · Zbl 1388.81215 · doi:10.1007/JHEP01(2016)005
[10] Höhn G 1955 Selbstduale Vertexoperatorsuperalgebren und das Babymonster PhD Thesis Universität Bonn (see: Bonner Mathematische Schriften 286)
[11] Höhn G 2003 Genera of vertex operator algebras and three-dimensional topological quantum field theories Fields Inst. Commun.39 89-107 · Zbl 1103.17008 · doi:10.1090/fic/039/05
[12] Huang Y-Z 2005 Vertex operator algebras, the Verlinde conjecture, and modular tensor categories Proc. Natl Acad. Sci. USA102 5352-6 · Zbl 1112.17029 · doi:10.1073/pnas.0409901102
[13] Junla N 2014 Classification of certain genera of codes, lattices and vertex operator algebras PhD Thesis Kansas State University
[14] Mason G 2007 Vector-valued modular forms and linear differential operators Int. J. Number Theory3 377-90 · Zbl 1197.11054 · doi:10.1142/S1793042107000973
[15] Mathur S D, Mukhi S and Sen A 1988 On the classification of rational conformal field theories Phys. Lett. B 213 303-8 · doi:10.1016/0370-2693(88)91765-0
[16] Read N 2009 Conformal invariance of chiral edge theories Phys. Rev B 79 245304 · doi:10.1103/PhysRevB.79.245304
[17] Rowell E, Stong R and Wang Z 2009 On classification of modular tensor categories Comm. Math. Phys.292 343-89 · Zbl 1186.18005 · doi:10.1007/s00220-009-0908-z
[18] Schellekens A N 1993 Meromorphic c = 24 conformal field theories Commun. Math. Phys.153 159-85 · Zbl 0782.17014 · doi:10.1007/BF02099044
[19] Tener J E 2016 Geometric realization of algebraic conformal field theories (arXiv:1611.01176 [math-ph]) · Zbl 1418.81081
[20] Turaev V G 1994 Quantum Invariants of Knots and 3-Manifolds(de Gruyter Studies in Mathematics vol 18) (Berlin: W de Gruyter & Co) · Zbl 0812.57003
[21] Wang Z 2010 Topological Quantum Computation vol 112 (Providence, RI: American Mathematical Society) · Zbl 1239.81005 · doi:10.1090/cbms/112
[22] Wen X-G 1992 Theory of the edge states in fractional quantum hall effects Int. J. Mod. Phys. B 6 1711-62 · doi:10.1142/S0217979292000840
[23] Zhu Y 1996 Modular invariance of characters of vertex operator algebras J. Amer. Math. Soc.9 237-302 · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.