×

Cardy condition for open-closed field algebras. (English) Zbl 1156.81023

The author studies open-closed field algebras over a vertex operator algebra V equipped with nondegenerate invariant bilinear forms for both open and closed sectors. The author proves that the open-closed field algebras give algebras over a certain \(C\)-extension of the so-called Swiss-cheese partial dioperad. The author also derives a graphical representation of \(S\) in the modular tensor category \(Cv\) and a categorical construction of the Cardy algebra in the Cardy case.

MSC:

81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17B69 Vertex operators; vertex operator algebras and related structures
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R15 Operator algebra methods applied to problems in quantum theory

References:

[1] Alexeevski A., Natanzon S.M.: Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves. Sel. Math. 12(3–4), 377–397 (2006) · Zbl 1158.57304
[2] Barron K., Huang Y.-Z., Lepowsky J.: Factorization of formal exponential and uniformization. J. Alg. 228, 551–579 (2000) · Zbl 0978.17024 · doi:10.1006/jabr.2000.8285
[3] Bakalov B., Kirillov A. Jr.: On the Lego-Teichmüller game. Transform. Groups 5, 207 (2000) · Zbl 0999.57021 · doi:10.1007/BF01679714
[4] Bakalov, B., Kirillov, Jr., A.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, Vol. 21, Providence, RI: Amer. Math. Soc., 2001 · Zbl 0965.18002
[5] Cardy J.L.: Conformal invariance and surface critical behavior. Nucl. Phys. B 240, 514–532 (1984) · doi:10.1016/0550-3213(84)90241-4
[6] Cardy J.L.: Effect of boundary conditions on the operator content of two-dimensional conformally invariant theories. Nucl. Phys. B275, 200–218 (1986) · Zbl 0689.17016 · doi:10.1016/0550-3213(86)90596-1
[7] Cardy J.L.: Operator content of two-dimensional conformal invariant theories. Nucl. Phys. B270, 186–204 (1986) · Zbl 0689.17016 · doi:10.1016/0550-3213(86)90552-3
[8] Cardy J.L.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B324, 581–596 (1989) · doi:10.1016/0550-3213(89)90521-X
[9] Dong C.-Y., Li H.-S., Mason G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Commun. Math. Phys. 214, 1–56 (2000) · Zbl 1061.17025 · doi:10.1007/s002200000242
[10] Felder G., Fröhlich J., Fuchs J., Schweigert C.: The geometry of WZW branes. J. Geom. Phys. 34, 162–190 (2000) · Zbl 1002.81042 · doi:10.1016/S0393-0440(99)00061-3
[11] Felder G., Fröhlich J., Fuchs J., Schweigert C.: Correlation functions and boundary conditions in rational conformal field theory and three-dimensional topology. Compositio Math. 131, 189–237 (2002) · Zbl 1002.81045 · doi:10.1023/A:1014903315415
[12] Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Adv. Math. 199(1), 192–329 (2006) · Zbl 1087.18006 · doi:10.1016/j.aim.2005.04.007
[13] Fjelstad J., Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators V: Proof of modular invariance and factorisation. Theory and Appl. of Categ 16, 392–433 (2006) · Zbl 1151.81038
[14] Fjelstad, J., Fuchs, J., Runkel, I., Schweigert, C.: Uniqueness of open/closed rational CFT with given algebra of open states. http://arXiv.org/listhep-th/0612306 , 2006 · Zbl 1151.81034
[15] Frenkel, I.B., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs Amer. Math. Soc. 104, 1993 · Zbl 0789.17022
[16] Fuchs J., Runkel I., Schweigert C.: Conformal correlation functions, Frobenius algebras and triangulations. Nucl. Phys. B624, 452–468 (2002) · Zbl 0985.81113 · doi:10.1016/S0550-3213(01)00638-1
[17] Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators I: Partition functions. Nucl. Phys. B678, 511 (2004) · Zbl 1097.81736 · doi:10.1016/j.nuclphysb.2003.11.026
[18] Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators III: Simple currents. Nucl. Phys. B694, 277 (2004) · Zbl 1151.81383
[19] Fuchs J., Runkel I., Schweigert C.: TFT construction of RCFT correlators IV: Structure constants and correlation functions. Nucl. Phys. B 715(3), 539–638 (2005) · Zbl 1151.81384 · doi:10.1016/j.nuclphysb.2005.03.018
[20] Fuchs J., Schweigert C.: Category theory for conformal boundary conditions. Fields Institute Commun. 39, 25 (2003) · Zbl 1084.17012
[21] Gan W.L.: Koszul duality for dioperads. Math. Res. Lett. 10(1), 109–124 (2003) · Zbl 1103.18010
[22] Huang Y.-Z.: Geometric interpretation of vertex operator algebras. Proc. Natl. Acad. Sci. USA 88, 9964–9968 (1991) · Zbl 0810.17019 · doi:10.1073/pnas.88.22.9964
[23] Huang Y.-Z.: A theory of tensor products for module categories for a vertex operator algebra, IV. J. Pure Appl. Alg. 100, 173–216 (1995) · Zbl 0841.17015 · doi:10.1016/0022-4049(95)00050-7
[24] Huang, Y.-Z.: Two-dimensional conformal geometry and vertex operator algebras. Progress in Mathematics, Vol. 148, Boston: Birkhäuser, 1997 · Zbl 0884.17021
[25] Huang Y.-Z.: Generalized rationality and a ”Jacobi identity” for intertwining operator algebras. Selecta Math. (N. S.) 6, 225–267 (2000) · Zbl 1013.17026 · doi:10.1007/PL00001389
[26] Huang Y.-Z.: A functional-analytic theory of vertex (operator) algebras. I. Commun. Math. Phys. 204(1), 61–84 (1999) · Zbl 0955.17018 · doi:10.1007/s002200050637
[27] Huang Y.-Z.: A functional-analytic theory of vertex (operator) algebras. II. Commun. Math. Phys. 242(3), 425–444 (2003) · Zbl 1082.17013
[28] Huang Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7, 375–400 (2005) · Zbl 1070.17012 · doi:10.1142/S0219199705001799
[29] Huang Y.-Z.: Riemann surfaces with boundaries and the theory of vertex operator algebras. Fields Institute Commun. 39, 109 (2003)
[30] Huang Y.-Z.: Differential equations, duality and modular invariance. Commun. Contemp. Math. 7, 649–706 (2005) · Zbl 1124.11022 · doi:10.1142/S021919970500191X
[31] Huang Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10(1), 103–154 (2008) · Zbl 1180.17008 · doi:10.1142/S0219199708002727
[32] Huang, Y.-Z.: Rigidity and modularity of vertex tensor categories. math.QA/0502533, 2005
[33] Huang Y.-Z., Kong L.: Open-string vertex algebra, category and operad. Commun. Math. Phys. 250, 433–471 (2004) · Zbl 1083.17010 · doi:10.1007/s00220-004-1059-x
[34] Huang Y.-Z., Kong L.: Full field algebras. Commun. Math. Phys. 272, 345–396 (2007) · Zbl 1153.17012 · doi:10.1007/s00220-007-0224-4
[35] Huang, Y.-Z., Kong, L.: Modular invariance for conformal full field algebras, math.QA/0609570, 2006
[36] Huang, Y.-Z., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories, In: Lie Theory and Geometry, in honor of Bertram Kostant R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac (Eds.) Boston: Birkhäuser, 1994, pp. 349–383 · Zbl 0848.17031
[37] Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Math. (N.S.) 1, 699–756 (1995) · Zbl 0854.17032 · doi:10.1007/BF01587908
[38] Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Selecta Math. (N.S.) 1, 757–786 (1995) · Zbl 0854.17033 · doi:10.1007/BF01587909
[39] Huang Y.-Z., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Alg. 100, 141–171 (1995) · Zbl 0841.17014 · doi:10.1016/0022-4049(95)00049-3
[40] Ishibashi N.: The boundary and crosscap states in conformal field theories. Mod. Phys. Lett. A4, 251 (1989)
[41] Kong L.: Full field algebras, operads and tensor categories. Adv. Math. 213, 271–340 (2007) · Zbl 1115.18002 · doi:10.1016/j.aim.2006.12.007
[42] Kong L.: Open-closed field algebras. Commun. Math. Phys. 280, 207–261 (2008) · Zbl 1173.17021 · doi:10.1007/s00220-008-0446-0
[43] Kontsevich M.: Operads and motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999) · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[44] Kirillov Jr. A.: On an inner product in modular tensor categories. J. Amer. Math. Soc 9(4), 1135–1169 (1996) · Zbl 0861.05065 · doi:10.1090/S0894-0347-96-00210-X
[45] Kriz I.: On spin and modularity of conformal field theory. Ann. Sci. École Norm. Sup. (4) 36(1), 57–112 (2003) · Zbl 1028.81050
[46] Kong, L., Runkel, I.: Cardy algebras and sewing constraints, I, II, in preparation · Zbl 1214.81251
[47] Lazaroiu C.I.: On the structure of open-closed topological field theory in two dimensions. Nucl. Phys. B603, 497–530 (2001) · Zbl 0983.81090 · doi:10.1016/S0550-3213(01)00135-3
[48] Lewellen D.C.: Sewing constraints for conformal field theories on surfaces with boundaries. Nucl. Phys. B372, 654 (1992) · doi:10.1016/0550-3213(92)90370-Q
[49] Lyubashenko V.: Modular transformations for Tensor categories. J. Pure Appl. Alg. 98(3), 297–327 (1995) · Zbl 0823.18003
[50] Lepowsky, J., Li, H.-S.: Introduction to vertex operator algebras and their representations. Progress in Mathematics, 227 Boston, MA: Birkhäuser Boston, Inc. 2004 · Zbl 1055.17001
[51] Lauda A., Pfeiffer H.: Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras. Topology Appl 155(7), 623–666 (2008) · Zbl 1158.57038 · doi:10.1016/j.topol.2007.11.005
[52] Miyamoto M.: Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J. 122(1), 51–91 (2004) · Zbl 1165.17311 · doi:10.1215/S0012-7094-04-12212-2
[53] Miyamoto, M.: Intertwining operators and modular invariance. math.QA/0010180, 2000 · Zbl 0988.17021
[54] Moore G.: Some comments on branes, G-flux, and K-theory. Internat. J. Mod. Phys. A16, 936–944 (2001) · Zbl 0994.81099 · doi:10.1142/S0217751X01004013
[55] Moore, G.: D-branes, RR-Fields and K-Theory, I, II, III, VI. Lecture notes for the ITP miniprogram: The duality workshop: a Math/Physics collaboration, June, 2001; http://online.itp.ucsb.edu/online/mp01/moore1
[56] Moore G., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989) · Zbl 0694.53074 · doi:10.1007/BF01238857
[57] Moore G., Seiberg N.: Naturality in conformal field theory. Nucl. Phys. B313, 16–40 (1989) · Zbl 0694.53074 · doi:10.1016/0550-3213(89)90511-7
[58] Moore, G., Seiberg, N.: Lecture on RCFT. In: Physics Geometry and Topology. Edited by H.C. Lee, New York: Plenum Press, 1990 · Zbl 0728.57012
[59] Moore, G., Segal, G.: D-branes and K-theory in 2D topological field theory. hep-th/0609042, 2006
[60] Reshetikhin N., Turaev V.G.: Invariants of 3-manifolds via link polynomials of quantum groups. Invent. Math. 103(3), 547–597 (1991) · Zbl 0725.57007 · doi:10.1007/BF01239527
[61] Segal, G.: The definition of conformal field theory, Preprint, 1988; also In: Topology, geometry and quantum field theory. ed. U. Tillmann, London Math. Soc. Lect. Note Ser., Vol. 308. Cambridge: Cambridge University Press, 2004, 421–577 · Zbl 1372.81138
[62] Segal G.: Topological structures in string theory. R. Soc. Lond. Philos. Trans. A359, 1389–1398 (2001) · Zbl 1041.81094 · doi:10.1098/rsta.2001.0841
[63] Sonoda, H.: Sewing conformal field theories, I, II. Nucl. Phys. B311, 401–416, 417–432 (1988)
[64] Turaev.: Quantum invariant of knots and 3-manifolds, de Gruyter Studies in Mathematics, Vol. 18, Berlin: Walter de Gruyter, 1994 · Zbl 0812.57003
[65] Voronov, A.A.: The Swiss-cheese operad. In: Homotopy invariant algebraic structures, in honor of J. Michael Boardman, Proc. of the AMS Special Session on Homotopy Theory, Baltimore, 1998, ed. J.-P. Meyer, J. Morava, W. S. Wilson, Contemporary Math., Vol. 239, pp. 365–373 Amer. Math. Soc., Providence, RI, 1999
[66] Zhu Y.-C.: Modular invariance of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996) · Zbl 0854.17034 · doi:10.1090/S0894-0347-96-00182-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.