×

From vertex operator algebras to conformal nets and back. (English) Zbl 1434.17001

Memoirs of the American Mathematical Society 1213. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2858-7/print; 978-1-4704-4742-7/ebook). vi, 90 p. (2018).
Publisher’s description: We consider unitary simple vertex operator algebras whose vertex operators satisfy certain energy bounds and a strong form of locality and call them strongly local. We present a general procedure which associates to every strongly local vertex operator algebra \(V\) a conformal net \(\mathcal A_V\) acting on the Hilbert space completion of \(V\) and prove that the isomorphism class of \(\mathcal A_V\) does not depend on the choice of the scalar product on \(V\). We show that the class of strongly local vertex operator algebras is closed under taking tensor products and unitary subalgebras and that, for every strongly local vertex operator algebra \(V\), the map \(W\mapsto\mathcal A_W\) gives a one-to-one correspondence between the unitary subalgebras \(W\) of \(V\) and the covariant subnets of \(\mathcal A_V\). Many known examples of vertex operator algebras such as the unitary Virasoro vertex operator algebras, the unitary affine Lie algebras vertex operator algebras, the known \(c=1\) unitary vertex operator algebras, the moonshine vertex operator algebra, together with their coset and orbifold subalgebras, turn out to be strongly local. We give various applications of our results. In particular, we show that the even shorter Moonshine vertex operator algebra is strongly local and that the automorphism group of the corresponding conformal net is the Baby Monster group. We prove that a construction of Fredenhagen and Jörß gives back the strongly local vertex operator algebra \(V\) from the conformal net \(\mathcal A_V\) and give conditions on a conformal net \(\mathcal A\) implying that \(\mathcal A=\mathcal A_V\) for some strongly local vertex operator algebra \(V\).

MSC:

17-02 Research exposition (monographs, survey articles) pertaining to nonassociative rings and algebras
17B69 Vertex operators; vertex operator algebras and related structures
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Bargmann, V., On unitary ray representations of continuous groups, Ann. of Math. (2), 59, 1-46 (1954) · Zbl 0055.10304
[2] Bisognano, Joseph J.; Wichmann, Eyvind H., On the duality condition for a Hermitian scalar field, J. Mathematical Phys., 16, 985-1007 (1975) · Zbl 0316.46062
[3] Blackadar, B., Operator algebras, Encyclopaedia of Mathematical Sciences 122, xx+517 pp. (2006), Springer-Verlag, Berlin · Zbl 1092.46003 · doi:10.1007/3-540-28517-2
[4] Borchers, Hans-J{\`“u}rgen; Buchholz, Detlev; Schroer, Bert, Polarization-free generators and the \(S\)-matrix, Comm. Math. Phys., 219, 1, 125-140 (2001) · Zbl 0985.81054 · doi:10.1007/s002200100411
[5] Borchers, H.-J.; Yngvason, J., Positivity of Wightman functionals and the existence of local nets, Comm. Math. Phys., 127, 3, 607-615 (1990) · Zbl 0715.46044
[6] Borchers, H.-J.; Yngvason, Jakob, From quantum fields to local von Neumann algebras, Rev. Math. Phys., Special Issue, 15-47 (1992) · Zbl 0785.46062 · doi:10.1142/S0129055X92000145
[7] Borchers, H.-J.; Zimmermann, W., On the self-adjointness of field operators, Nuovo Cimento (10), 31, 1047-1059 (1964) · Zbl 0151.44303
[8] Bostelmann, Henning, Phase space properties and the short distance structure in quantum field theory, J. Math. Phys., 46, 5, 052301, 17 pp. (2005) · Zbl 1110.81132 · doi:10.1063/1.1883313
[9] Bratteli, Ola; Robinson, Derek W., Operator algebras and quantum statistical mechanics. 1, Texts and Monographs in Physics, xiv+505 pp. (1987), Springer-Verlag, New York · Zbl 0905.46046 · doi:10.1007/978-3-662-02520-8
[10] Brunetti, R.; Guido, D.; Longo, R., Modular structure and duality in conformal quantum field theory, Comm. Math. Phys., 156, 1, 201-219 (1993) · Zbl 0809.46086
[11] Brunetti, R.; Guido, D.; Longo, R., Modular localization and Wigner particles, Rev. Math. Phys., 14, 7-8, 759-785 (2002) · Zbl 1033.81063 · doi:10.1142/S0129055X02001387
[12] Buchholz, Detlev, On quantum fields that generate local algebras, J. Math. Phys., 31, 8, 1839-1846 (1990) · Zbl 0708.46061 · doi:10.1063/1.528680
[13] Buchholz, Detlev; Mack, Gerhard; Todorov, Ivan, The current algebra on the circle as a germ of local field theories, Nuclear Phys. B Proc. Suppl., 5B, 20-56 (1988) · Zbl 0958.22500 · doi:10.1016/0920-5632(88)90367-2
[14] Buchholz, Detlev; Schulz-Mirbach, Hanns, Haag duality in conformal quantum field theory, Rev. Math. Phys., 2, 1, 105-125 (1990) · Zbl 0748.46040 · doi:10.1142/S0129055X90000053
[15] Carpi, Sebastiano, Absence of subsystems for the Haag-Kastler net generated by the energy-momentum tensor in two-dimensional conformal field theory, Lett. Math. Phys., 45, 3, 259-267 (1998) · Zbl 0909.46063 · doi:10.1023/A:1007466420114
[16] Carpi, Sebastiano, Quantum Noether’s theorem and conformal field theory: a study of some models, Rev. Math. Phys., 11, 5, 519-532 (1999) · Zbl 0965.81041 · doi:10.1142/S0129055X99000192
[17] Carpi, Sebastiano, Classification of subsystems for the Haag-Kastler nets generated by \(c=1\) chiral current algebras, Lett. Math. Phys., 47, 4, 353-364 (1999) · Zbl 0946.47055 · doi:10.1023/A:1007517131143
[18] Carpi, Sebastiano, On the representation theory of Virasoro nets, Comm. Math. Phys., 244, 2, 261-284 (2004) · Zbl 1071.81079 · doi:10.1007/s00220-003-0988-0
[19] Carpi, Sebastiano, Intersecting Jones projections, Internat. J. Math., 16, 6, 687-691 (2005) · Zbl 1090.46045 · doi:10.1142/S0129167X05003016
[20] Carpi, Sebastiano; Kawahigashi, Yasuyuki; Longo, Roberto, Structure and classification of superconformal nets, Ann. Henri Poincar\'e, 9, 6, 1069-1121 (2008) · Zbl 1154.81023 · doi:10.1007/s00023-008-0381-9
[21] Carpi, Sebastiano; Weiner, Mih{\'a}ly, On the uniqueness of diffeomorphism symmetry in conformal field theory, Comm. Math. Phys., 258, 1, 203-221 (2005) · Zbl 1079.81060 · doi:10.1007/s00220-005-1335-4
[22] Chriss, Neil; Ginzburg, Victor, Representation theory and complex geometry, x+495 pp. (1997), Birkh\`“auser Boston, Inc., Boston, MA · Zbl 0879.22001
[23] Connes, Alain, Une classification des facteurs de type \({\rm III} \), Ann. Sci. \'Ecole Norm. Sup. (4), 6, 133-252 (1973) · Zbl 0274.46050
[24] D’Antoni, Claudio; Longo, Roberto; R{\u{a}}dulescu, Florin, Conformal nets, maximal temperature and models from free probability, J. Operator Theory, 45, 1, 195-208 (2001) · Zbl 0994.46022
[25] Di Francesco, Philippe; Mathieu, Pierre; S{\'e}n{\'e}chal, David, Conformal field theory, Graduate Texts in Contemporary Physics, xxii+890 pp. (1997), Springer-Verlag, New York · Zbl 0869.53052 · doi:10.1007/978-1-4612-2256-9
[26] Dijkgraaf, Robbert; Vafa, Cumrun; Verlinde, Erik; Verlinde, Herman, The operator algebra of orbifold models, Comm. Math. Phys., 123, 3, 485-526 (1989) · Zbl 0674.46051
[27] Dong, Chongying; Griess, Robert L., Jr., Rank one lattice type vertex operator algebras and their automorphism groups, J. Algebra, 208, 1, 262-275 (1998) · Zbl 0918.17023 · doi:10.1006/jabr.1998.7498
[28] Dong, Chongying; Lin, Xingjun, Unitary vertex operator algebras, J. Algebra, 397, 252-277 (2014) · Zbl 1351.17032 · doi:10.1016/j.jalgebra.2013.09.007
[29] Dong, Chongying; Mason, Geoffrey, Quantum Galois theory for compact Lie groups, J. Algebra, 214, 1, 92-102 (1999) · Zbl 0929.17031 · doi:10.1006/jabr.1998.7694
[30] Dong, Chongying; Xu, Feng, Conformal nets associated with lattices and their orbifolds, Adv. Math., 206, 1, 279-306 (2006) · Zbl 1107.17015 · doi:10.1016/j.aim.2005.08.009
[31] Doplicher, S.; Longo, R., Standard and split inclusions of von Neumann algebras, Invent. Math., 75, 3, 493-536 (1984) · Zbl 0539.46043 · doi:10.1007/BF01388641
[32] Driessler, W.; Fr{\`“o}hlich, J., The reconstruction of local observable algebras from the Euclidean Green”s functions of relativistic quantum field theory, Ann. Inst. H. Poincar\'e Sect. A (N.S.), 27, 3, 221-236 (1977) · Zbl 0364.46051
[33] Driessler, Wulf; Summers, Stephen J.; Wichmann, Eyvind H., On the connection between quantum fields and later von Neumann algebras of local operators, Comm. Math. Phys., 105, 1, 49-84 (1986) · Zbl 0595.46062
[34] Epstein, D. B. A., The simplicity of certain groups of homeomorphisms, Compositio Math., 22, 165-173 (1970) · Zbl 0205.28201
[35] Epstein, D. B. A., Commutators of \(C^{\infty} \)-diffeomorphisms. Appendix to: “A curious remark concerning the geometric transfer map” by John N. Mather [Comment. Math. Helv. {\bf59}(1984), no. 1, 86-110; MR0743944 (86c:58017)], Comment. Math. Helv., 59, 1, 111-122 (1984) · Zbl 0535.58007 · doi:10.1007/BF02566339
[36] Evans, David E.; Kawahigashi, Yasuyuki, Quantum symmetries on operator algebras, Oxford Mathematical Monographs, xvi+829 pp. (1998), The Clarendon Press, Oxford University Press, New York · Zbl 0924.46054
[37] Fredenhagen, Klaus; Hertel, Joachim, Local algebras of observables and pointlike localized fields, Comm. Math. Phys., 80, 4, 555-561 (1981) · Zbl 0472.46051
[38] Fredenhagen, Klaus; J{\`“o}r{\ss}, Martin, Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions, Comm. Math. Phys., 176, 3, 541-554 (1996) · Zbl 0853.46077
[39] Frenkel, Igor B.; Huang, Yi-Zhi; Lepowsky, James, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104, 494, viii+64 pp. (1993) · Zbl 0789.17022 · doi:10.1090/memo/0494
[40] I.B. Frenkel, J. Lepowsky and A. Meurman: Vertex operator algebras and the monster. Academic Press, Boston, 1989. · Zbl 0674.17001
[41] Friedan, Daniel; Qiu, Zongan; Shenker, Stephen, Conformal invariance, unitarity, and critical exponents in two dimensions, Phys. Rev. Lett., 52, 18, 1575-1578 (1984) · doi:10.1103/PhysRevLett.52.1575
[42] Friedan, Daniel; Qiu, Zongan; Shenker, Stephen, Details of the nonunitarity proof for highest weight representations of the Virasoro algebra, Comm. Math. Phys., 107, 4, 535-542 (1986) · Zbl 0608.17010
[43] Furlan, P.; Sotkov, G. M.; Todorov, I. T., Two-dimensional conformal quantum field theory, Riv. Nuovo Cimento (3), 12, 6, 1-202 (1989) · doi:10.1007/BF02742979
[44] Gabbiani, Fabrizio; Fr{\`“o}hlich, J{\'”u}rg, Operator algebras and conformal field theory, Comm. Math. Phys., 155, 3, 569-640 (1993) · Zbl 0801.46084
[45] Glimm, James; Jaffe, Arthur, Quantum physics, xxii+535 pp. (1987), Springer-Verlag, New York · doi:10.1007/978-1-4612-4728-9
[46] Goddard, P.; Kent, A.; Olive, D., Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys., 103, 1, 105-119 (1986) · Zbl 0588.17014
[47] Goodman, Roe; Wallach, Nolan R., Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle, J. Reine Angew. Math., 347, 69-133 (1984) · Zbl 0514.22012 · doi:10.1515/crll.1984.347.69
[48] Goodman, Roe; Wallach, Nolan R., Projective unitary positive-energy representations of \({\rm Diff}(S^1)\), J. Funct. Anal., 63, 3, 299-321 (1985) · Zbl 0636.22013 · doi:10.1016/0022-1236(85)90090-4
[49] Guido, Daniele; Longo, Roberto, The conformal spin and statistics theorem, Comm. Math. Phys., 181, 1, 11-35 (1996) · Zbl 0858.46053
[50] Haag, Rudolf, Local quantum physics, Texts and Monographs in Physics, xvi+390 pp. (1996), Springer-Verlag, Berlin · Zbl 0857.46057 · doi:10.1007/978-3-642-61458-3
[51] Hamilton, Richard S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7, 1, 65-222 (1982) · Zbl 0499.58003 · doi:10.1090/S0273-0979-1982-15004-2
[52] Hanaki, Akihide; Miyamoto, Masahiko; Tambara, Daisuke, Quantum Galois theory for finite groups, Duke Math. J., 97, 3, 541-544 (1999) · Zbl 0977.17029 · doi:10.1215/S0012-7094-99-09720-X
[53] Herman, Michael-Robert, Simplicit\'e du groupe des diff\'eomorphismes de classe \(C^{\infty} \), isotopes \`“a l”identit\'e, du tore de dimension \(n\), C. R. Acad. Sci. Paris S\'er. A-B, 273, A232-A234 (1971) · Zbl 0217.49602
[54] H{\`“o}hn, Gerald, The group of symmetries of the shorter Moonshine module, Abh. Math. Semin. Univ. Hambg., 80, 2, 275-283 (2010) · Zbl 1210.17033 · doi:10.1007/s12188-010-0040-1
[55] Izumi, Masaki; Longo, Roberto; Popa, Sorin, A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Anal., 155, 1, 25-63 (1998) · Zbl 0915.46051 · doi:10.1006/jfan.1997.3228
[56] Jones, V. F. R., Index for subfactors, Invent. Math., 72, 1, 1-25 (1983) · Zbl 0508.46040 · doi:10.1007/BF01389127
[57] V.F.R. Jones: Fusion on algebres de von Neumann et groupe de lacets [d’apre A. Wassermann]. Seminaire Bourbaki, 47eme annee, 1994-95, n. 800, Juin 1995.
[58] Kac, Victor G., Infinite-dimensional Lie algebras, xxii+400 pp. (1990), Cambridge University Press, Cambridge · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[59] Kac, Victor, Vertex algebras for beginners, University Lecture Series 10, vi+201 pp. (1998), American Mathematical Society, Providence, RI · Zbl 0924.17023 · doi:10.1090/ulect/010
[60] Kac, Victor G.; Longo, Roberto; Xu, Feng, Solitons in affine and permutation orbifolds, Comm. Math. Phys., 253, 3, 723-764 (2005) · Zbl 1078.81051 · doi:10.1007/s00220-004-1160-1
[61] V.G. Kac, P. Moseneder Frajria, P. Papi and F. Xu: Conformal embeddings and simple current extensions. Int. Math. Res. Notices. doi: 10.1093/imrn/rnu092 · Zbl 1418.17059
[62] Kac, V. G.; Raina, A. K., Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics 2, xii+145 pp. (1987), World Scientific Publishing Co., Inc., Teaneck, NJ · Zbl 0668.17012
[63] Kadison, Richard V.; Ringrose, John R., Fundamentals of the theory of operator algebras. Vol. I, Graduate Studies in Mathematics 15, xvi+398 pp. (1997), American Mathematical Society, Providence, RI · Zbl 0888.46039
[64] Kadison, Richard V.; Ringrose, John R., Fundamentals of the theory of operator algebras. Vol. II, Graduate Studies in Mathematics 16, i-xxii and 399-1074 (1997), American Mathematical Society, Providence, RI · Zbl 0991.46031 · doi:10.1090/gsm/016/01
[65] Kawahigashi, Yasuyuki; Longo, Roberto, Classification of local conformal nets. Case \(c<1\), Ann. of Math. (2), 160, 2, 493-522 (2004) · Zbl 1083.46038 · doi:10.4007/annals.2004.160.493
[66] Kawahigashi, Yasuyuki; Longo, Roberto, Local conformal nets arising from framed vertex operator algebras, Adv. Math., 206, 2, 729-751 (2006) · Zbl 1105.81052 · doi:10.1016/j.aim.2005.11.003
[67] Kawahigashi, Yasuyuki; Longo, Roberto; M{\`“u}ger, Michael, Multi-interval subfactors and modularity of representations in conformal field theory, Comm. Math. Phys., 219, 3, 631-669 (2001) · Zbl 1016.81031 · doi:10.1007/PL00005565
[68] Kosaki, Hideki, Type III factors and index theory, Lecture Notes Series 43, ii+96 pp. (1998), Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul · Zbl 0915.46053
[69] K{\`“o}ster, S., Local nature of coset models, Rev. Math. Phys., 16, 3, 353-382 (2004) · Zbl 1065.81117 · doi:10.1142/S0129055X0400200X
[70] Lepowsky, James; Li, Haisheng, Introduction to vertex operator algebras and their representations, Progress in Mathematics 227, xiv+318 pp. (2004), Birkh\`“auser Boston, Inc., Boston, MA · Zbl 1055.17001 · doi:10.1007/978-0-8176-8186-9
[71] Li, Hai Sheng, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra, 96, 3, 279-297 (1994) · Zbl 0813.17020 · doi:10.1016/0022-4049(94)90104-X
[72] T. Loke: Operator algebras and conformal field theory of the discrete series representation of \(Diff^+ (S^1)\). PhD Thesis, University of Cambridge, 1994.
[73] Longo, Roberto, Notes on algebraic invariants for noncommutative dynamical systems, Comm. Math. Phys., 69, 3, 195-207 (1979) · Zbl 0421.46053
[74] Longo, Roberto, Index of subfactors and statistics of quantum fields. I, Comm. Math. Phys., 126, 2, 217-247 (1989) · Zbl 0682.46045
[75] Longo, Roberto, Conformal subnets and intermediate subfactors, Comm. Math. Phys., 237, 1-2, 7-30 (2003) · Zbl 1042.46035 · doi:10.1007/s00220-003-0814-8
[76] Longo, Roberto, Real Hilbert subspaces, modular theory, \({\rm SL}(2,\mathbb{R})\) and CFT. Von Neumann algebras in Sibiu, Theta Ser. Adv. Math. 10, 33-91 (2008), Theta, Bucharest · Zbl 1199.81032
[77] R. Longo: Lecture notes on conformal nets (in preparation). http://www.mat.uniroma2.it/longo/Lecture_Notes.html
[78] Longo, R.; Rehren, K.-H., Nets of subfactors, Rev. Math. Phys., 7, 4, 567-597 (1995) · Zbl 0836.46055 · doi:10.1142/S0129055X95000232
[79] Longo, Roberto; Xu, Feng, Topological sectors and a dichotomy in conformal field theory, Comm. Math. Phys., 251, 2, 321-364 (2004) · Zbl 1158.81345 · doi:10.1007/s00220-004-1063-1
[80] Mather, John N., Simplicity of certain groups of diffeomorphisms, Bull. Amer. Math. Soc., 80, 271-273 (1974) · Zbl 0275.58007
[81] Matsuo, Atsushi, 3-transposition groups of symplectic type and vertex operator algebras, J. Math. Soc. Japan, 57, 3, 639-649 (2005) · Zbl 1135.17305
[82] Matsuo, Atsushi; Nagatomo, Kiyokazu, Axioms for a vertex algebra and the locality of quantum fields, MSJ Memoirs 4, x+110 pp. (1999), Mathematical Society of Japan, Tokyo · Zbl 0928.17025
[83] Milnor, J., Remarks on infinite-dimensional Lie groups. Relativity, groups and topology, II, Les Houches, 1983, 1007-1057 (1984), North-Holland, Amsterdam · Zbl 0594.22009
[84] Miyamoto, Masahiko, A new construction of the Moonshine vertex operator algebra over the real number field, Ann. of Math. (2), 159, 2, 535-596 (2004) · Zbl 1133.17017 · doi:10.4007/annals.2004.159.535
[85] K.-H. Neeb and H. Salmasian: Classification of positive energy representations of the Virasoro group. Int. Math. Res. Notices. doi: 10.1093/imrn/rnu197 · Zbl 1328.22015
[86] Nelson, Edward, Analytic vectors, Ann. of Math. (2), 70, 572-615 (1959) · Zbl 0091.10704
[87] Popa, Sorin, Classification of subfactors and their endomorphisms, CBMS Regional Conference Series in Mathematics 86, x+110 pp. (1995), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI · Zbl 0865.46044 · doi:10.1090/cbms/086
[88] Pressley, Andrew; Segal, Graeme, Loop groups, Oxford Mathematical Monographs, viii+318 pp. (1986), The Clarendon Press, Oxford University Press, New York · Zbl 0638.22009
[89] Puk{\'a}nszky, L., The Plancherel formula for the universal covering group of \({\rm SL}(R,\,2)\), Math. Ann., 156, 96-143 (1964) · Zbl 0171.33903
[90] Reed, Michael; Simon, Barry, Methods of modern mathematical physics. I, xv+400 pp. (1980), Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York · Zbl 0459.46001
[91] Rehren, Karl-Henning, A new view of the Virasoro algebra, Lett. Math. Phys., 30, 2, 125-130 (1994) · Zbl 0789.17018 · doi:10.1007/BF00939700
[92] Roitman, Michael, Invariant bilinear forms on a vertex algebra, J. Pure Appl. Algebra, 194, 3, 329-345 (2004) · Zbl 1113.17014 · doi:10.1016/j.jpaa.2004.05.005
[93] Rudin, Walter, Functional analysis, International Series in Pure and Applied Mathematics, xviii+424 pp. (1991), McGraw-Hill, Inc., New York · Zbl 0867.46001
[94] Str{\u{a}}til{\u{a}}, {\c{S}}erban, Modular theory in operator algebras, 492 pp. (1981), Editura Academiei Republicii Socialiste Rom\^ania, Bucharest; Abacus Press, Tunbridge Wells · Zbl 0504.46043
[95] Streater, R. F.; Wightman, A. S., PCT, spin and statistics, and all that, Advanced Book Classics, xviii+207 pp. (1989), Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA · Zbl 0704.53058
[96] Thurston, William, Foliations and groups of diffeomorphisms, Bull. Amer. Math. Soc., 80, 304-307 (1974) · Zbl 0295.57014
[97] V. Toledano Laredo: Fusion of positive energy representations of \(LSpin_{2n}\), PhD Thesis, University of Cambridge, 1997.
[98] Toledano Laredo, Valerio, Integrating unitary representations of infinite-dimensional Lie groups, J. Funct. Anal., 161, 2, 478-508 (1999) · Zbl 0919.22007 · doi:10.1006/jfan.1998.3359
[99] Wassermann, Antony J., Operator algebras and conformal field theory. Proceedings of the International Congress of Mathematicians, Vol.1, 2, Z\`“urich, 1994, 966-979 (1995), Birkh\'”auser, Basel · Zbl 0854.46055
[100] Wassermann, Antony, Operator algebras and conformal field theory. III. Fusion of positive energy representations of \({\rm LSU}(N)\) using bounded operators, Invent. Math., 133, 3, 467-538 (1998) · Zbl 0944.46059 · doi:10.1007/s002220050253
[101] M. Weiner: Conformal covariance and related properties of chiral QFT. Tesi di dottorato. Universita di Roma “Tor Vergata”, 2005, arXiv:math/0703336 [math.OA]
[102] Weiner, Mih{\'a}ly, An algebraic version of Haag’s theorem, Comm. Math. Phys., 305, 2, 469-485 (2011) · Zbl 1223.81130 · doi:10.1007/s00220-011-1236-7
[103] Xu, Feng, Algebraic coset conformal field theories, Comm. Math. Phys., 211, 1, 1-43 (2000) · Zbl 1040.81085 · doi:10.1007/s002200050800
[104] Xu, Feng, Strong additivity and conformal nets, Pacific J. Math., 221, 1, 167-199 (2005) · Zbl 1103.81020 · doi:10.2140/pjm.2005.221.167
[105] Xu, Feng, On examples of intermediate subfactors from conformal field theory, Comm. Math. Phys., 320, 3, 761-781 (2013) · Zbl 1277.46029 · doi:10.1007/s00220-012-1635-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.