×

A holomorphic vertex operator algebra of central charge 24 with the weight one Lie algebra \(F_{4,6}A_{2,2}\). (English) Zbl 1469.17026

Summary: In this paper, a holomorphic vertex operator algebra \(U\) of central charge 24 with the weight one Lie algebra \(A_{8, 3} A_{2, 1}^2\) is proved to be unique. Moreover, a holomorphic vertex operator algebra of central charge 24 with the weight one Lie algebra \(F_{4, 6} A_{2, 2}\) is obtained by applying a \(\mathbb{Z}_2\)-orbifold construction to \(U\). The uniqueness of such a vertex operator algebra is also established. By a similar method, we also established the uniqueness of a holomorphic vertex operator algebra of central charge 24 with the weight one Lie algebra \(E_{7, 3} A_{5, 1}\). As a consequence, we verify that all 71 Lie algebras in Schellekens’ list can be realized as the weight one Lie algebras of some holomorphic vertex operator algebras of central charge 24. In addition, we establish the uniqueness of three holomorphic vertex operator algebras of central charge 24 whose weight one Lie algebras have the type \(A_{8, 3} A_{2, 1}^2, F_{4, 6} A_{2, 2}\), and \(E_{7, 3} A_{5, 1}\).

MSC:

17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] Abe, T.; Buhl, G.; Dong, C., Rationality, regularity and \(C_2\)-cofiniteness, Trans. Am. Math. Soc., 356, 3391-3402 (2004) · Zbl 1070.17011
[2] Ai, C.; Dong, C.; Jiao, X.; Ren, L., The irreducible modules and fusion rules for the parafermion vertex operator algebras, Trans. Am. Math. Soc., 370, 8, 5963-5981 (2018) · Zbl 1433.17034
[3] Ai, C.; Lin, X., The classification of extensions of \(L_{s l_3}(k, 0)\), Algebra Colloq., 24, 407-418 (2017) · Zbl 1425.17038
[4] Bakalov, B.; Kirillov, A., Lectures on Tensor Categories and Modular Functors, University Lecture Series, vol. 21 (2000) · Zbl 0965.18002
[5] Barron, K.; Dong, C.; Mason, G., Twisted sectors for tensor product vertex operator algebras associated to permutation groups, Commun. Math. Phys., 227, 349-384 (2002) · Zbl 1073.17008
[6] Borcherds, R., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Natl. Acad. Sci. USA, 83, 3068-3071 (1986) · Zbl 0613.17012
[7] Bourbaki, N., Lie groups and Lie algebras, (Elements of Mathematics (Berlin) (2002), Springer-Verlag: Springer-Verlag Berlin), Chapters 4-6. Translated from the 1968 French original by Andrew Pressley · Zbl 0186.33001
[8] Carnahan, S.; Miyamoto, M., Regularity of fixed-point vertex operator subalgebras
[9] Chen, H. Y.; Lam, C. H., An explicit Majorana representation of the group \(3^2 : 2\) of \(3C\)-pure type, Pac. J. Math., 271, 1, 25-51 (2014) · Zbl 1323.17020
[10] Davydov, A.; Muger, M.; Nikshych, D.; Ostrik, V., The Witt group of non-degenerate braided fusion categories, J. Reine Angew. Math., 677, 135-177 (2013) · Zbl 1271.18008
[11] Dong, C.; Jiao, X.; Xu, F., Mirror extensions of vertex operator algebras, Commun. Math. Phys., 329, 263-294 (2014) · Zbl 1295.81086
[12] Dong, C.; Jiao, X.; Xu, F., Quantum dimensions and quantum Galois theory, Trans. Am. Math. Soc., 365, 6441-6469 (2013) · Zbl 1337.17018
[13] Dong, C.; Lepowsky, J., Generalized Vertex Algebras and Relative Vertex Operators, Progress in Math., vol. 112 (1993), Birkhäuser: Birkhäuser Boston · Zbl 0803.17009
[14] Dong, C.; Lepowsky, J., The algebraic structure of relative twisted vertex operators, J. Pure Appl. Algebra, 110, 259-295 (1996) · Zbl 0862.17021
[15] Dong, C.; Li, H.; Mason, G., Simple currents and extensions of vertex operator algebras, Commun. Math. Phys., 180, 671-707 (1996) · Zbl 0873.17027
[16] Dong, C.; Li, H.; Mason, G., Twisted representations of vertex operator algebras, Math. Ann., 310, 571-600 (1998) · Zbl 0890.17029
[17] Dong, C.; Li, H.; Mason, G., Modular invariance of trace functions in orbifold theory and generalized moonshine, Commun. Math. Phys., 214, 1-56 (2000) · Zbl 1061.17025
[18] Dong, C.; Lin, X.; Ng, S., Congruence property in conformal field theory, Algebra Number Theory, 9, 2121-2166 (2015) · Zbl 1377.17025
[19] Dong, C.; Mason, G., Shifted vertex operator algebras, Math. Proc. Camb. Philos. Soc., 141, 67-80 (2006) · Zbl 1141.17020
[20] Dong, C.; Mason, G., Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not., 56, 2989-3008 (2004) · Zbl 1106.17032
[21] Dong, C.; Mason, G., Integrability of \(C_2\)-cofinite vertex operator algebra, Int. Math. Res. Not., 2006, Article 80468 pp. (2006), 15 pp · Zbl 1106.17033
[22] Dong, C.; Mason, G., On quantum Galois theory, Duke Math. J., 86, 305-321 (1997) · Zbl 0890.17031
[23] Dong, C.; Mason, G., Nonabelian orbifolds and the Boson-Fermion correspondence, Commun. Math. Phys., 163, 523-559 (1994) · Zbl 0808.17019
[24] Dong, C.; Mason, G., Holomorphic vertex operator algebras of small central charge, Pac. J. Math., 213, 253-266 (2004) · Zbl 1100.17010
[25] van Ekeren, J.; Möller, S.; Scheithauer, N., Construction and classification of holomorphic vertex operator algebras, J. Reine Angew. Math. (2019), in press
[26] Frenkel, I.; Huang, Y.; Lepowsky, J., On axiomatic approaches to vertex operator algebras and modules, Mem. Am. Math. Soc., 104 (1993) · Zbl 0789.17022
[27] Frenkel, I.; Lepowsky, J.; Meurman, A., Vertex Operator Algebras and the Monster, Pure and Appl. Math., vol. 134 (1988), Academic Press, Inc.: Academic Press, Inc. Boston · Zbl 0674.17001
[28] Frenkel, I.; Zhu, Y., Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J., 66, 123-168 (1992) · Zbl 0848.17032
[29] Fuchs, J., Simple WZW currents, Commun. Math. Phys., 136, 345-356 (1991) · Zbl 0736.17033
[30] Fuchs, J.; Gepner, D., On the connection between WZW and free field theories, Nucl. Phys. B, 294, 30-42 (1987)
[31] Gannon, T., The level two and three modular invariants of SU(n), Lett. Math. Phys., 39, 289-298 (1997) · Zbl 0871.17019
[32] Helgason, S., Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, vol. 80 (1978), Academic Press: Academic Press New York-London · Zbl 0451.53038
[33] Huang, Y., Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math., 10, 871-911 (2008) · Zbl 1169.17019
[34] Huang, Y.; Kirillov, A.; Lepowsky, J., Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys., 337, 1143-1159 (2015) · Zbl 1388.17014
[35] Humphreys, J., Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, vol. 9 (1972), Springer-Verlag · Zbl 0254.17004
[36] Humphreys, J., Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, vol. 29 (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0725.20028
[37] Kac, V., Infinite Dimensional Lie Algebras (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0716.17022
[38] Kac, V.; Niculescu-Sanielevici, M., Decomposition of representations of exceptional affine algebras with respect to conformal subalgebras, Phys. Rev. D, 37, 2231-2237 (1988)
[39] Kassel, C., Quantum Groups, Graduate Texts in Mathematics, vol. 155 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0808.17003
[40] Kawasetsu, K.; Lam, C.; Lin, X., \(Z_2\)-orbifold associated with −1-isometry and uniqueness of holomorphic vertex operator algebras of central charge 24, Proc. Am. Math. Soc., 146, 5, 1937-1950 (2018) · Zbl 1430.17089
[41] Krauel, M.; Miyamoto, M., A modular invariance property of multivariable trace functions for regular vertex operator algebras, J. Algebra, 444, 124-142 (2015) · Zbl 1358.17032
[42] Lam, C., On the constructions of holomorphic vertex operator algebras of central charge 24, Commun. Math. Phys., 305, 153-198 (2011) · Zbl 1229.17029
[43] Lam, C.; Shimakura, H., Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24, Proc. Lond. Math. Soc., 104, 540-576 (2012) · Zbl 1292.17026
[44] Lam, C.; Shimakura, H., Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms, Commun. Math. Phys., 342, 803-841 (2016) · Zbl 1366.17026
[45] Lam, C.; Shimakura, H., A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has type \(A_{6, 7}\), Lett. Math. Phys., 106, 11, 1575-1585 (2016) · Zbl 1418.17062
[46] Lam, C.; Shimakura, H., Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras, Trans. Am. Math. Soc. (2019), in press · Zbl 1455.17027
[47] Lepowsky, J., Calculus of twisted vertex operators, Proc. Natl. Acad. Sci. USA, 82, 8295-8299 (1985) · Zbl 0579.17010
[48] Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., vol. 227 (2004), Birkhäuser: Birkhäuser Boston · Zbl 1055.17001
[49] Li, H., Symmetric invariant bilinear forms on vertex operator algebras, Pure Appl. Algebra, 96, 279-297 (1994) · Zbl 0813.17020
[50] Li, H., Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, (Moonshine, the Monster, and Related Topics. Moonshine, the Monster, and Related Topics, Contemp. Math., vol. 193 (1995), American Mathematical Society: American Mathematical Society Providence, RI), 203-236 · Zbl 0844.17022
[51] Li, H., Certain extensions of vertex operator algebras of affine type, Commun. Math. Phys., 217, 653-696 (2001) · Zbl 0985.17019
[52] Lin, X., Mirror extensions of rational vertex operator algebras, Trans. Am. Math. Soc., 369, 3821-3840 (2017) · Zbl 1433.17036
[53] Minchenko, A., Semisimple subalgebras of exceptional Lie algebras, Tr. Mosk. Mat. Obŝ., 67, 256-293 (2006) · Zbl 1152.17003
[54] Miyamoto, M., A \(Z_3\)-orbifold theory of lattice vertex operator algebra and \(Z_3\)-orbifold constructions, (Symmetries, Integrable Systems and Representations. Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., vol. 40 (2013), Springer: Springer Heidelberg), 319-344 · Zbl 1287.17049
[55] Montague, P. S., Orbifold constructions and the classification of self-dual \(c = 24\) conformal field theories, Nucl. Phys. B, 428, 233-258 (1994) · Zbl 0999.81531
[56] Ostrik, V.; Sun, M., Level-rank dual via tensor category, Commun. Math. Phys., 326, 49-61 (2014) · Zbl 1371.18006
[57] Sagaki, D.; Shimakura, H., Application of a \(Z_3\)-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices, Trans. Am. Math. Soc., 368, 1621-1646 (2016) · Zbl 1369.17025
[58] Schellekens, A., Meromorphic \(c = 24\) conformal field theories, Commun. Math. Phys., 153, 159-185 (1993) · Zbl 0782.17014
[59] Shimakura, H., The automorphism group of the vertex operator algebra \(V_L^+\) for an even lattice \(L\) without roots, J. Algebra, 280, 29-57 (2004) · Zbl 1091.17011
[60] Shimakura, H., Lifts of automorphisms of vertex operator algebras in simple current extensions, Math. Z., 256, 491-508 (2007) · Zbl 1141.17021
[61] Yamauchi, H., A Theory of Simple Current Extensions of Vertex Operator Algebras and Applications to the Moonshine Vertex Operator Algebra (2004), University of Tsukuba, Ph.D. Thesis
[62] Xu, F., An application of mirror extensions, Commun. Math. Phys., 290, 83 (2009) · Zbl 1192.81307
[63] Zhu, Y., Modular invariance of characters of vertex operator algebras, J. Am. Math. Soc., 9, 237-302 (1996) · Zbl 0854.17034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.