×

Towards black hole evaporation in Jackiw-Teitelboim gravity. (English) Zbl 1418.83040

Summary: Using a definition of the bulk frame within 2d Jackiw-Teitelboim gravity, we go into the bulk from the Schwarzian boundary. Including the path integral over the Schwarzian degrees of freedom, we discuss the quantum gravitational Unruh effect and the Planckian black-body spectrum of the thermal atmosphere. We analyze matter entanglement entropy and how the entangling surface should be defined in quantum gravity. Finally, we reanalyze a semi-classical model for black hole evaporation studied in [J. Engelsöy et al., J. High Energy Phys. 2016, No. 7, Paper No. 139, 30 p. (2016; Zbl 1390.83104)] and compute the entanglement between early and late Hawking radiation, illustrating information loss in the semi-classical framework.

MSC:

83C80 Analogues of general relativity in lower dimensions
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
83C47 Methods of quantum field theory in general relativity and gravitational theory
81S40 Path integrals in quantum mechanics
81P40 Quantum coherence, entanglement, quantum correlations
81T28 Thermal quantum field theory

Citations:

Zbl 1390.83104

References:

[1] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE]. · Zbl 1390.83104 · doi:10.1007/JHEP07(2016)139
[2] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev.D 14 (1976) 2460 [INSPIRE].
[3] C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes, Phys. Rev.D 45 (1992) R1005 [hep-th/9111056] [INSPIRE].
[4] S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys. Rev.D 46 (1992) 2486 [hep-th/9204072] [INSPIRE].
[5] K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev.D 48 (1993) 2670 [hep-th/9304128] [INSPIRE]. · Zbl 0842.53067
[6] A. Almheiri and J. Sully, An Uneventful Horizon in Two Dimensions, JHEP02 (2014) 108 [arXiv:1307.8149] [INSPIRE]. · Zbl 1333.83055 · doi:10.1007/JHEP02(2014)108
[7] R. Jackiw, Lower Dimensional Gravity, Nucl. Phys.B 252 (1985) 343 [INSPIRE]. · doi:10.1016/0550-3213(85)90448-1
[8] C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett.126B (1983) 41 [INSPIRE]. · doi:10.1016/0370-2693(83)90012-6
[9] A. Almheiri and J. Polchinski, Models of AdS2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE]. · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[10] K. Jensen, Chaos in AdS2Holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE]. · doi:10.1103/PhysRevLett.117.111601
[11] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[12] A. Kitaev, Hidden correlations in the Hawking radiation and themral noise, talk given at The Fundamental Physics Prize Symposium, 10 November 2014 [https://www.youtube.com/watch?v=OQ9qN8j7EZI].
[13] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at KITP seminar, 12 February 2015 [http://online.kitp.ucsb.edu/online/joint98/kitaev/].
[14] A. Kitaev, A simple model of quantum holography, talks at KITP, 7 April 2015 and 27 May 2015 [http://online.kitp.ucsb.edu/online/entangled15/kitaev/] [http://online.kitp.ucsb.edu/online/entangled15/kitaev2/].
[15] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[16] J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP04 (2016) 001 [arXiv:1601.06768] [INSPIRE]. · Zbl 1388.81067 · doi:10.1007/JHEP04(2016)001
[17] A. Jevicki, K. Suzuki and J. Yoon, Bi-Local Holography in the SYK Model, JHEP07 (2016) 007 [arXiv:1603.06246] [INSPIRE]. · Zbl 1390.83116 · doi:10.1007/JHEP07(2016)007
[18] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[19] A. Jevicki and K. Suzuki, Bi-Local Holography in the SYK Model: Perturbations, JHEP11 (2016) 046 [arXiv:1608.07567] [INSPIRE]. · Zbl 1390.81520 · doi:10.1007/JHEP11(2016)046
[20] J.S. Cotler et al., Black Holes and Random Matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE]. · Zbl 1380.81307
[21] T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP08 (2017) 136 [arXiv:1705.08408] [INSPIRE]. · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[22] W. Donnelly and S.B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra, Phys. Rev.D 93 (2016) 024030 [Erratum ibid.D 94 (2016) 029903] [arXiv:1507.07921] [INSPIRE].
[23] S.B. Giddings and A. Kinsella, Gauge-invariant observables, gravitational dressings and holography in AdS, JHEP11 (2018) 074 [arXiv:1802.01602] [INSPIRE]. · Zbl 1404.81227 · doi:10.1007/JHEP11(2018)074
[24] A. Blommaert, T.G. Mertens and H. Verschelde, Clocks and Rods in Jackiw-Teitelboim Quantum Gravity, arXiv:1902.11194 [INSPIRE]. · Zbl 1423.83021
[25] A. Almheiri, Holographic Quantum Error Correction and the Projected Black Hole Interior, arXiv:1810.02055 [INSPIRE].
[26] D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP10 (2017) 008 [arXiv:1703.04612] [INSPIRE]. · Zbl 1383.83099 · doi:10.1007/JHEP10(2017)008
[27] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys.B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE]. · Zbl 1346.81157 · doi:10.1016/j.nuclphysb.2016.08.002
[28] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys.B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE]. · Zbl 1370.82033 · doi:10.1016/j.nuclphysb.2017.06.012
[29] T.G. Mertens, The Schwarzian theory — origins, JHEP05 (2018) 036 [arXiv:1801.09605] [INSPIRE]. · Zbl 1391.83081 · doi:10.1007/JHEP05(2018)036
[30] A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian Theory — A Wilson Line Perspective, JHEP12 (2018) 022 [arXiv:1806.07765] [INSPIRE]. · Zbl 1405.83040 · doi:10.1007/JHEP12(2018)022
[31] A. Blommaert, T.G. Mertens and H. Verschelde, Fine Structure of Jackiw-Teitelboim Quantum Gravity, arXiv:1812.00918 [INSPIRE]. · Zbl 1423.83022
[32] A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, JHEP05 (2019) 198 [arXiv:1808.07032] [INSPIRE]. · Zbl 1416.83075 · doi:10.1007/JHEP05(2019)198
[33] Z. Yang, The Quantum Gravity Dynamics of Near Extremal Black Holes, JHEP05 (2019) 205 [arXiv:1809.08647] [INSPIRE]. · Zbl 1416.83079 · doi:10.1007/JHEP05(2019)205
[34] M. Spradlin and A. Strominger, Vacuum states for AdS2black holes, JHEP11 (1999) 021 [hep-th/9904143] [INSPIRE]. · Zbl 0955.83016 · doi:10.1088/1126-6708/1999/11/021
[35] H.T. Lam, T.G. Mertens, G.J. Turiaci and H. Verlinde, Shockwave S-matrix from Schwarzian Quantum Mechanics, JHEP11 (2018) 182 [arXiv:1804.09834] [INSPIRE]. · Zbl 1404.83076 · doi:10.1007/JHEP11(2018)182
[36] A. Almheiri, T. Anous and A. Lewkowycz, Inside out: meet the operators inside the horizon. On bulk reconstruction behind causal horizons, JHEP01 (2018) 028 [arXiv:1707.06622] [INSPIRE]. · Zbl 1384.81089
[37] S.H. Shenker and D. Stanford, Multiple Shocks, JHEP12 (2014) 046 [arXiv:1312.3296] [INSPIRE]. · Zbl 1390.83222 · doi:10.1007/JHEP12(2014)046
[38] A. Fabbri, J. Navarro-Salas and G.J. Olmo, Particles and energy fluxes from a CFT perspective, Phys. Rev.D 70 (2004) 064022 [hep-th/0403021] [INSPIRE].
[39] G.W. Gibbons and M.J. Perry, Black Holes in Thermal Equilibrium, Phys. Rev. Lett.36 (1976) 985 [INSPIRE]. · doi:10.1103/PhysRevLett.36.985
[40] T.G. Mertens and G.J. Turiaci, Defects in Jackiw-Teitelboim Quantum Gravity, arXiv:1904.05228 [INSPIRE]. · Zbl 1421.83044
[41] T.M. Fiola, J. Preskill, A. Strominger and S.P. Trivedi, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev.D 50 (1994) 3987 [hep-th/9403137] [INSPIRE].
[42] N. Callebaut and H. Verlinde, Entanglement Dynamics in 2D CFT with Boundary: Entropic origin of JT gravity and Schwarzian QM, JHEP05 (2019) 045 [arXiv:1808.05583] [INSPIRE]. · Zbl 1416.83072 · doi:10.1007/JHEP05(2019)045
[43] N. Callebaut, The gravitational dynamics of kinematic space, JHEP02 (2019) 153 [arXiv:1808.10431] [INSPIRE]. · Zbl 1411.83070 · doi:10.1007/JHEP02(2019)153
[44] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE]. · Zbl 0990.81564 · doi:10.1016/0550-3213(94)90402-2
[45] T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS2/CFT1, Phys. Rev.D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].
[46] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE]. · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[47] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP06 (2016) 004 [arXiv:1512.06431] [INSPIRE]. · Zbl 1388.83268 · doi:10.1007/JHEP06(2016)004
[48] J. Lin, Entanglement entropy in Jackiw-Teitelboim Gravity, arXiv:1807.06575 [INSPIRE].
[49] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, arXiv:1905.08762 [INSPIRE]. · Zbl 1431.83123
[50] T. Anous, T. Hartman, A. Rovai and J. Sonner, Black Hole Collapse in the 1/c Expansion, JHEP07 (2016) 123 [arXiv:1603.04856] [INSPIRE]. · Zbl 1390.83170 · doi:10.1007/JHEP07(2016)123
[51] W.H. Zurek, Entropy Evaporated by a Black Hole, Phys. Rev. Lett.49 (1982) 1683 [INSPIRE]. · doi:10.1103/PhysRevLett.49.1683
[52] T.G. Mertens, H. Verschelde and V.I. Zakharov, The long string at the stretched horizon and the entropy of large non-extremal black holes, JHEP02 (2016) 041 [arXiv:1505.04025] [INSPIRE]. · Zbl 1388.83485 · doi:10.1007/JHEP02(2016)041
[53] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, arXiv:1905.08255 [INSPIRE]. · Zbl 1454.81039
[54] A. Achucarro and M.E. Ortiz, Relating black holes in two-dimensions and three-dimensions, Phys. Rev.D 48 (1993) 3600 [hep-th/9304068] [INSPIRE].
[55] P. Nayak, A. Shukla, R.M. Soni, S.P. Trivedi and V. Vishal, On the Dynamics of Near-Extremal Black Holes, JHEP09 (2018) 048 [arXiv:1802.09547] [INSPIRE]. · Zbl 1398.83069 · doi:10.1007/JHEP09(2018)048
[56] S. Sachdev, Universal low temperature theory of charged black holes with AdS2horizons, J. Math. Phys.60 (2019) 052303 [arXiv:1902.04078] [INSPIRE]. · Zbl 1414.83037 · doi:10.1063/1.5092726
[57] U. Moitra, S.P. Trivedi and V. Vishal, Near-Extremal Near-Horizons, arXiv:1808.08239 [INSPIRE]. · Zbl 1418.83028
[58] U. Moitra, S.K. Sake, S.P. Trivedi and V. Vishal, Jackiw-Teitelboim Gravity and Rotating Black Holes, arXiv:1905.10378 [INSPIRE]. · Zbl 1429.83066
[59] P. Nayak, J. Sonner and M. Vielma, to appear.
[60] A. Gaikwad, L.K. Joshi, G. Mandal and S.R. Wadia, Holographic dual to charged SYK from 3D Gravity and Chern-Simons, arXiv:1802.07746 [INSPIRE]. · Zbl 1435.83149
[61] D. Anninos, D.M. Hofman and J. Kruthoff, Charged Quantum Fields in AdS2, arXiv:1906.00924 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.