×

Bi-local holography in the SYK model. (English) Zbl 1390.83116

Summary: We discuss large \(N\) rules of the Sachdev-Ye-Kitaev model and the bi-local representation of holography of this theory. This is done by establishing \(1/N\) Feynman rules in terms of bi-local propagators and vertices, which can be evaluated following the recent procedure of J. Polchinski and V. Rosenhaus [ibid. 2016, No. 4, Paper No. 1, 25 p. (2016; Zbl 1388.81067)]. These rules can be interpreted as Witten type diagrams of the dual AdS theory, which we are able to define at IR fixed point and off.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory

Citations:

Zbl 1388.81067

References:

[1] S. Sachdev and J.-w. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[2] A. Georges, O. Parcollet and S. Sachdev, Mean Field Theory of a Quantum Heisenberg Spin Glass, Phys. Rev. Lett.85 (2000) 840 [cond-mat/9909239].
[3] S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett.105 (2010) 151602 [arXiv:1006.3794] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151602
[4] S. Sachdev, Strange metals and the AdS/CFT correspondence, J. Stat. Mech.1011 (2010) P11022 [arXiv:1010.0682] [INSPIRE]. · doi:10.1088/1742-5468/2010/11/P11022
[5] A. Kitaev, A simple model of quantum holography, KITP strings seminar and Entanglement 2015 program, 12 February, 7 April and 27 May 2015, http://online.kitp.ucsb.edu/online/entangled15/.
[6] A. Kitaev, Hidden Correlations in the Hawking Radiation and Thermal Noise, talk given at Breakthrough Prize Fundamental Physics Symposium, 10 November 2014, http://online.kitp.ucsb.edu/online/joint98/.
[7] S. Sachdev, Bekenstein-Hawking Entropy and Strange Metals, Phys. Rev.X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE]. · doi:10.1103/PhysRevX.5.041025
[8] J. Polchinski and V. Rosenhaus, The Spectrum in the Sachdev-Ye-Kitaev Model, JHEP04 (2016) 001 [arXiv:1601.06768] [INSPIRE]. · Zbl 1388.81067 · doi:10.1007/JHEP04(2016)001
[9] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, A. O’Bannon and J. Wu, Holographic impurities and Kondo effect, Fortsch. Phys.64 (2016) 322 [arXiv:1511.09362] [INSPIRE]. · Zbl 1339.82016 · doi:10.1002/prop.201500079
[10] J. Maldacena, Models for the Vacuum, talk given at Nambu Memorial Symposium, Chicago, U.S.A., 12 March 2016.
[11] J. Maldacena and D. Stanford, Comments on the Sachdev-Ye-Kitaev model, arXiv:1604.07818 [INSPIRE].
[12] W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, arXiv:1603.05246 [INSPIRE].
[13] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE]. · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[14] S.H. Shenker and D. Stanford, Multiple Shocks, JHEP12 (2014) 046 [arXiv:1312.3296] [INSPIRE]. · Zbl 1390.83222 · doi:10.1007/JHEP12(2014)046
[15] S. Leichenauer, Disrupting Entanglement of Black Holes, Phys. Rev.D 90 (2014) 046009 [arXiv:1405.7365] [INSPIRE].
[16] D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP03 (2015) 051 [arXiv:1409.8180] [INSPIRE]. · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[17] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE]. · doi:10.1103/PhysRevLett.115.131603
[18] S.H. Shenker and D. Stanford, Stringy effects in scrambling, JHEP05 (2015) 132 [arXiv:1412.6087] [INSPIRE]. · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[19] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, arXiv:1503.01409 [INSPIRE]. · Zbl 1390.81388
[20] J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE]. · Zbl 1358.83057
[21] D. Stanford, Many-body chaos at weak coupling, arXiv:1512.07687 [INSPIRE]. · Zbl 1390.81471
[22] B. Michel, J. Polchinski, V. Rosenhaus and S.J. Suh, Four-point function in the IOP matrix model, JHEP05 (2016) 048 [arXiv:1602.06422] [INSPIRE]. · Zbl 1388.81457 · doi:10.1007/JHEP05(2016)048
[23] P. Caputa, T. Numasawa and A. Veliz-Osorio, Scrambling without chaos in RCFT, arXiv:1602.06542 [INSPIRE]. · Zbl 1361.81132
[24] Y. Gu and X.-L. Qi, Fractional Statistics and the Butterfly Effect, arXiv:1602.06543 [INSPIRE]. · Zbl 1390.81070
[25] E. Perlmutter, Bounding the Space of Holographic CFTs with Chaos, arXiv:1602.08272 [INSPIRE]. · Zbl 1390.83128
[26] D. Anninos, T. Anous and F. Denef, Disordered Quivers and Cold Horizons, arXiv:1603.00453 [INSPIRE]. · Zbl 1306.81183
[27] G. Turiaci and H. Verlinde, On CFT and Quantum Chaos, arXiv:1603.03020 [INSPIRE]. · Zbl 1390.81191
[28] S.R. Das and A. Jevicki, Large-N collective fields and holography, Phys. Rev.D 68 (2003) 044011 [hep-th/0304093] [INSPIRE]. · Zbl 1244.81049
[29] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett.B 550 (2002) 213 [hep-th/0210114] [INSPIRE]. · Zbl 1001.81057 · doi:10.1016/S0370-2693(02)02980-5
[30] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys.B 644 (2002) 303 [Erratum ibid.B 660 (2003) 403] [hep-th/0205131] [INSPIRE]. · Zbl 0999.81078
[31] R. de Mello Koch, A. Jevicki, K. Jin and J.P. Rodrigues, AdS4/CF T3Construction from Collective Fields, Phys. Rev.D 83 (2011) 025006 [arXiv:1008.0633] [INSPIRE].
[32] R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Holography as a Gauge Phenomenon in Higher Spin Duality, JHEP01 (2015) 055 [arXiv:1408.1255] [INSPIRE]. · doi:10.1007/JHEP01(2015)055
[33] R. de Mello Koch, A. Jevicki, J.P. Rodrigues and J. Yoon, Canonical Formulation of O(N) Vector/Higher Spin Correspondence, J. Phys.A 48 (2015) 105403 [arXiv:1408.4800] [INSPIRE]. · Zbl 1423.81163
[34] E. Mintun and J. Polchinski, Higher Spin Holography, RG and the Light Cone, arXiv:1411.3151 [INSPIRE].
[35] S.J. Brodsky, G.F. de Teramond, H.G. Dosch and J. Erlich, Light-Front Holographic QCD and Emerging Confinement, Phys. Rept.584 (2015) 1 [arXiv:1407.8131] [INSPIRE]. · Zbl 1357.81157 · doi:10.1016/j.physrep.2015.05.001
[36] J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev.D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].
[37] A. Jevicki and B. Sakita, Collective Field Approach to the Large-N Limit: Euclidean Field Theories, Nucl. Phys.B 185 (1981) 89 [INSPIRE]. · doi:10.1016/0550-3213(81)90365-5
[38] R. de Mello Koch and J.P. Rodrigues, Systematic 1/N corrections for bosonic and fermionic vector models without auxiliary fields, Phys. Rev.D 54 (1996) 7794 [hep-th/9605079] [INSPIRE].
[39] A. Jevicki, K. Jin and J. Yoon, 1/N and loop corrections in higher spin AdS4/CF T3duality, Phys. Rev.D 89 (2014) 085039 [arXiv:1401.3318] [INSPIRE].
[40] J.-L. Gervais, A. Jevicki and B. Sakita, Collective Coordinate Method for Quantization of Extended Systems, Phys. Rept.23 (1976) 281 [INSPIRE]. · doi:10.1016/0370-1573(76)90049-1
[41] G.W. Moore and N. Seiberg, From loops to fields in 2-D quantum gravity, Int. J. Mod. Phys.A 7 (1992) 2601 [INSPIRE]. · Zbl 0802.53031 · doi:10.1142/S0217751X92001174
[42] S.R. Das and A. Jevicki, String Field Theory and Physical Interpretation of D = 1 Strings, Mod. Phys. Lett.A 5 (1990) 1639 [INSPIRE]. · Zbl 1020.81765 · doi:10.1142/S0217732390001888
[43] A. Almheiri and J. Polchinski, Models of AdS2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE]. · Zbl 1388.83079 · doi:10.1007/JHEP11(2015)014
[44] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, arXiv:1606.01857 [INSPIRE]. · Zbl 1361.81112
[45] J. Engelsöy, T.G. Mertens and H. Verlinde, An Investigation of AdS2 Backreaction and Holography, arXiv:1606.03438 [INSPIRE]. · Zbl 1390.83104
[46] A. Jevicki and J. Yoon, Bulk from Bi-locals in Thermo Field CFT, JHEP02 (2016) 090 [arXiv:1503.08484] [INSPIRE]. · Zbl 1388.83271 · doi:10.1007/JHEP02(2016)090
[47] A. Jevicki and K. Suzuki, Thermofield Duality for Higher Spin Rindler Gravity, JHEP02 (2016) 094 [arXiv:1508.07956] [INSPIRE]. · Zbl 1388.83592 · doi:10.1007/JHEP02(2016)094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.