×

Relative entropy equals bulk relative entropy. (English) Zbl 1388.83268

Summary: We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

MSC:

83C47 Methods of quantum field theory in general relativity and gravitational theory
83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
94A17 Measures of information, entropy

References:

[1] M. Ohya and D. Petz, Quantum entropy and its use, corrected 2nd printing, Text and Monographs in Physics, Springer Study Edition, Springer (2004).
[2] H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci. Kyoto1976 (1976) 809 [INSPIRE]. · Zbl 0326.46031
[3] H. Casini, Relative entropy and the Bekenstein bound, Class. Quant. Grav.25 (2008) 205021 [arXiv:0804.2182] [INSPIRE]. · Zbl 1152.83361 · doi:10.1088/0264-9381/25/20/205021
[4] A.C. Wall, A Proof of the generalized second law for rapidly-evolving Rindler horizons, Phys. Rev.D 82 (2010) 124019 [arXiv:1007.1493] [INSPIRE].
[5] A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev.D 85 (2012) 104049 [arXiv:1105.3445] [INSPIRE].
[6] D.L. Jafferis and S.J. Suh, The gravity duals of modular hamiltonians, arXiv:1412.8465 [INSPIRE]. · Zbl 1390.83115
[7] D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP08 (2013) 060 [arXiv:1305.3182] [INSPIRE]. · Zbl 1342.83128 · doi:10.1007/JHEP08(2013)060
[8] N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP04 (2014) 195 [arXiv:1308.3716] [INSPIRE]. · doi:10.1007/JHEP04(2014)195
[9] T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP03 (2014) 051 [arXiv:1312.7856] [INSPIRE]. · Zbl 1333.83141 · doi:10.1007/JHEP03(2014)051
[10] J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from entanglement of conformal field theories, Phys. Rev. Lett.114 (2015) 221601 [arXiv:1412.1879] [INSPIRE]. · doi:10.1103/PhysRevLett.114.221601
[11] N. Lashkari, C. Rabideau, P. Sabella-Garnier and M. Van Raamsdonk, Inviolable energy conditions from entanglement inequalities, JHEP06 (2015) 067 [arXiv:1412.3514] [INSPIRE]. · Zbl 1388.83287 · doi:10.1007/JHEP06(2015)067
[12] N. Lashkari and M. Van Raamsdonk, Canonical energy is quantum Fisher information, JHEP04 (2016) 153 [arXiv:1508.00897] [INSPIRE]. · Zbl 1388.83288 · doi:10.1007/JHEP04(2016)153
[13] N. Lashkari, J. Lin, H. Ooguri, M. van Raamsdonk, B. Stoica, to appear.
[14] H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev.D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].
[15] H. Casini, F.D. Mazzitelli and E. Testé, Area terms in entanglement entropy, Phys. Rev.D 91 (2015) 104035 [arXiv:1412.6522] [INSPIRE].
[16] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[17] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys.A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE]. · Zbl 1186.81017
[18] W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett.114 (2015) 111603 [arXiv:1412.1895] [INSPIRE]. · doi:10.1103/PhysRevLett.114.111603
[19] W. Donnelly and A.C. Wall, Geometric entropy and edge modes of the electromagnetic field, arXiv:1506.05792 [INSPIRE].
[20] D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys.B 453 (1995) 281 [hep-th/9503016] [INSPIRE]. · Zbl 0925.83036 · doi:10.1016/0550-3213(95)00443-V
[21] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[22] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[23] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE]. · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
[24] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP09 (2013) 109 [arXiv:1306.4682] [INSPIRE]. · Zbl 1342.83260
[25] J.M. Bardeen, B. Carter and S.W. Hawking, The four laws of black hole mechanics, Commun. Math. Phys.31 (1973) 161 [INSPIRE]. · Zbl 1125.83309 · doi:10.1007/BF01645742
[26] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[27] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
[28] B. Swingle and M. Van Raamsdonk, Universality of Gravity from Entanglement, arXiv:1405.2933 [INSPIRE].
[29] J. Lee, A. Lewkowycz, E. Perlmutter and B.R. Safdi, Rényi entropy, stationarity and entanglement of the conformal scalar, JHEP03 (2015) 075 [arXiv:1407.7816] [INSPIRE]. · Zbl 1388.83290 · doi:10.1007/JHEP03(2015)075
[30] S. Hollands and R.M. Wald, Stability of black holes and black branes, Commun. Math. Phys.321 (2013) 629 [arXiv:1201.0463] [INSPIRE]. · Zbl 1271.85001 · doi:10.1007/s00220-012-1638-1
[31] H. Casini and M. Huerta, Reduced density matrix and internal dynamics for multicomponent regions, Class. Quant. Grav.26 (2009) 185005 [arXiv:0903.5284] [INSPIRE]. · Zbl 1176.83071 · doi:10.1088/0264-9381/26/18/185005
[32] A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE]. · Zbl 1388.81095 · doi:10.1007/JHEP04(2015)163
[33] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE]. · Zbl 1248.83029 · doi:10.1088/0264-9381/29/15/155009
[34] R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev.D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].
[35] M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE]. · doi:10.1007/JHEP12(2014)162
[36] J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[37] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE]. · Zbl 1338.83057 · doi:10.1002/prop.201300020
[38] S. Carlip and C. Teitelboim, The off-shell black hole, Class. Quant. Grav.12 (1995) 1699 [gr-qc/9312002] [INSPIRE].
[39] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].
[40] V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP06 (2012) 114 [arXiv:1204.1698] [INSPIRE]. · Zbl 1397.81422 · doi:10.1007/JHEP06(2012)114
[41] A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav.31 (2014) 225007 [arXiv:1211.3494] [INSPIRE]. · Zbl 1304.81139 · doi:10.1088/0264-9381/31/22/225007
[42] I.A. Morrison, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP05 (2014) 053 [arXiv:1403.3426] [INSPIRE]. · doi:10.1007/JHEP05(2014)053
[43] K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP10 (2013) 212 [arXiv:1211.6767] [INSPIRE]. · doi:10.1007/JHEP10(2013)212
[44] W.R. Kelly and A.C. Wall, Coarse-grained entropy and causal holographic information in AdS/CFT, JHEP03 (2014) 118 [arXiv:1309.3610] [INSPIRE]. · Zbl 1333.83144 · doi:10.1007/JHEP03(2014)118
[45] T. Jacobson, Entanglement equilibrium and the Einstein equation, Phys. Rev. Lett.116 (2016) 201101 [arXiv:1505.04753] [INSPIRE]. · doi:10.1103/PhysRevLett.116.201101
[46] R.M. Soni and S.P. Trivedi, Aspects of entanglement entropy for gauge theories, JHEP01 (2016) 136 [arXiv:1510.07455] [INSPIRE]. · Zbl 1388.81088 · doi:10.1007/JHEP01(2016)136
[47] K. Van Acoleyen, N. Bultinck, J. Haegeman, M. Marien, V.B. Scholz and F. Verstraete, The entanglement of distillation for gauge theories, arXiv:1511.04369 [INSPIRE].
[48] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE]. · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[49] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP09 (2013) 018 [arXiv:1304.6483] [INSPIRE]. · doi:10.1007/JHEP09(2013)018
[50] D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett.111 (2013) 171301 [arXiv:1307.4706] [INSPIRE]. · doi:10.1103/PhysRevLett.111.171301
[51] K.-W. Huang, Central charge and entangled gauge fields, Phys. Rev.D 92 (2015) 025010 [arXiv:1412.2730] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.