×

Shockwave S-matrix from Schwarzian quantum mechanics. (English) Zbl 1404.83076

Summary: Schwarzian quantum mechanics describes the collective IR mode of the SYK model and captures key features of 2D black hole dynamics. Exact results for its correlation functions were obtained in [T. G. Mertens et al., ibid. 2017, No. 8, Paper No. 136, 57 p. (2017; Zbl 1381.83089)]. We compare these results with bulk gravity expectations. We find that the semi-classical limit of the OTO four-point function exactly matches with the scattering amplitude obtained from the Dray-’t Hooft shockwave \( \mathcal{S} \)-matrix. We show that the two point function of heavy operators reduces to the semi-classical saddle-point of the Schwarzian action. We also explain a previously noted match between the OTO four point functions and 2D conformal blocks. Generalizations to higher-point functions are discussed.

MSC:

83C80 Analogues of general relativity in lower dimensions
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81U20 \(S\)-matrix theory, etc. in quantum theory
83C57 Black holes
81S10 Geometry and quantization, symplectic methods

Citations:

Zbl 1381.83089

References:

[1] Mertens, TG; Turiaci, GJ; Verlinde, HL, Solving the Schwarzian via the conformal bootstrap, JHEP, 08, 136, (2017) · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[2] T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE].
[3] Y. Kiem, H.L. Verlinde and E.P. Verlinde, Black hole horizons and complementarity, Phys. Rev.D 52 (1995) 7053 [hep-th/9502074] [INSPIRE]. · Zbl 1052.83522
[4] K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev.D 48 (1993) 2670 [hep-th/9304128] [INSPIRE]. · Zbl 0842.53067
[5] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067, (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[6] S.H. Shenker and D. Stanford, Multiple shocks, JHEP12 (2014) 046 [arXiv:1312.3296] [INSPIRE]. · Zbl 1390.83222
[7] S. Jackson, L. McGough and H. Verlinde, Conformal bootstrap, universality and gravitational scattering, Nucl. Phys.B 901 (2015) 382 [arXiv:1412.5205] [INSPIRE]. · Zbl 1332.81157
[8] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132, (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[9] A. Kitaev, Hidden correlations in the Hawking radiation and themral noise, talk given at the Fundamental Physics Prize Symposium, November 10, Stanford University, Stanford U.S.A. (2014).
[10] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at KITP seminar, February 12, Caltech, Pasadena, U.S.A. (2015).
[11] A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015).
[12] Kitaev, A.; Suh, SJ, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP, 05, 183, (2018) · Zbl 1391.83080 · doi:10.1007/JHEP05(2018)183
[13] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106, (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[14] S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
[15] Polchinski, J.; Rosenhaus, V., The spectrum in the Sachdev-Ye-Kitaev model, JHEP, 04, 001, (2016) · Zbl 1388.81067 · doi:10.1007/JHEP04(2016)001
[16] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[17] Jevicki, A.; Suzuki, K.; Yoon, J., Bi-local holography in the SYK model, JHEP, 07, 007, (2016) · Zbl 1390.83116 · doi:10.1007/JHEP07(2016)007
[18] Jevicki, A.; Suzuki, K., Bi-local holography in the SYK model: perturbations, JHEP, 11, 046, (2016) · Zbl 1390.81520 · doi:10.1007/JHEP11(2016)046
[19] J.S. Cotler et al., Black holes and random matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE].
[20] A. Almheiri and J. Polchinski, Models of AdS_{2}backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE]. · Zbl 1388.83079
[21] R. Jackiw, Lower dimensional gravity, Nucl. Phys.B 252 (1985) 343 [INSPIRE].
[22] C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett.B 126 (1983) 41.
[23] K. Jensen, Chaos in AdS_{2}holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
[24] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[25] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS_{2}backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
[26] M. Cvetič and I. Papadimitriou, AdS_{2}holographic dictionary, JHEP12 (2016) 008 [Erratum ibid.01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
[27] Nayak, P.; etal., On the dynamics of near-extremal black holes, JHEP, 09, 048, (2018) · Zbl 1398.83069 · doi:10.1007/JHEP09(2018)048
[28] Turiaci, G.; Verlinde, H., On CFT and quantum chaos, JHEP, 12, 110, (2016) · Zbl 1390.81191 · doi:10.1007/JHEP12(2016)110
[29] G. Turiaci and H. Verlinde, Towards a 2d QFT analog of the SYK model, JHEP10 (2017) 167 [arXiv:1701.00528] [INSPIRE]. · Zbl 1383.81261
[30] D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys.B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE]. · Zbl 1346.81157
[31] D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys.B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE]. · Zbl 1370.82033
[32] Stanford, D.; Witten, E., Fermionic localization of the Schwarzian theory, JHEP, 10, 008, (2017) · Zbl 1383.83099 · doi:10.1007/JHEP10(2017)008
[33] Z. Yang, The quantum gravity dynamics of near extremal black holes, arXiv:1809.08647.
[34] Gao, P.; Jafferis, DL; Wall, A., Traversable wormholes via a double trace deformation, JHEP, 12, 151, (2017) · Zbl 1383.83054 · doi:10.1007/JHEP12(2017)151
[35] Maldacena, J.; Stanford, D.; Yang, Z., Diving into traversable wormholes, Fortsch. Phys., 65, 1700034, (2017) · doi:10.1002/prop.201700034
[36] G. ’t Hooft, Diagonalizing the black hole information retrieval process, arXiv:1509.01695 [INSPIRE].
[37] G. ’t Hooft, Black hole unitarity and antipodal entanglement, Found. Phys.46 (2016) 1185 [arXiv:1601.03447] [INSPIRE]. · Zbl 1352.83009
[38] W.G. Unruh, Notes on black hole evaporation, Phys. Rev.D 14 (1976) 870 [INSPIRE].
[39] Mertens, TG, The Schwarzian theory — Origins, JHEP, 05, 036, (2018) · Zbl 1391.83081 · doi:10.1007/JHEP05(2018)036
[40] A.B. Zamolodchikov and A.B. Zamolodchikov, Liouville field theory on a pseudosphere, hep-th/0101152 [INSPIRE]. · Zbl 0925.81301
[41] J.-L. Gervais and A. Neveu, The dual string spectrum in Polyakov’s quantization. 1, Nucl. Phys.B 199 (1982) 59 [INSPIRE].
[42] J.-L. Gervais and A. Neveu, Dual string spectrum in Polyakov’s quantization. 2. Mode separation, Nucl. Phys.B 209 (1982) 125 [INSPIRE].
[43] J.L. Gervais and A. Neveu, New quantum solution of Liouville field theory, Phys. Lett.B 123 (1983) 86.
[44] J.-L. Gervais and A. Neveu, New quantum treatment of Liouville field theory, Nucl. Phys.B 224 (1983) 329 [INSPIRE].
[45] H. Dorn and G. Jorjadze, Boundary Liouville theory: Hamiltonian description and quantization, SIGMA3 (2007) 012 [hep-th/0610197] [INSPIRE]. · Zbl 1135.37025
[46] H. Dorn and G. Jorjadze, Operator approach to boundary Liouville theory, Annals Phys.323 (2008) 2799 [arXiv:0801.3206] [INSPIRE]. · Zbl 1151.81033
[47] B. Ponsot and J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, hep-th/9911110 [INSPIRE].
[48] W. Groenevelt, The Wilson function transform, math.CA/0306424. · Zbl 1079.33005
[49] W. Groenevelt, Wilson function transforms related to Racah coefficients, math.CA/0501511. · Zbl 1102.33009
[50] B. Le Floch and G.J. Turiaci, AGT/ℤ_{2}, JHEP12 (2017) 099 [arXiv:1708.04631] [INSPIRE].
[51] H. Chen et al., Degenerate operators and the 1/c expansion: Lorentzian resummations, high order computations and super-Virasoro blocks, JHEP03 (2017) 167 [arXiv:1606.02659] [INSPIRE]. · Zbl 1377.81162
[52] Gu, Y.; Lucas, A.; Qi, X-L, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP, 09, 120, (2017) · Zbl 1382.81181 · doi:10.1007/JHEP09(2017)120
[53] I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS_{2}gravity, arXiv:1707.02325 [INSPIRE].
[54] A. Eberlein, V. Kasper, S. Sachdev and J. Steinberg, Quantum quench of the Sachdev-Ye-Kitaev Model, Phys. Rev.B 96 (2017) 205123 [arXiv:1706.07803] [INSPIRE].
[55] Sonner, J.; Vielma, M., Eigenstate thermalization in the Sachdev-Ye-Kitaev model, JHEP, 11, 149, (2017) · Zbl 1383.81258 · doi:10.1007/JHEP11(2017)149
[56] Seiberg, N., Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl., 102, 319, (1990) · Zbl 0790.53059 · doi:10.1143/PTPS.102.319
[57] J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
[58] F.M. Haehl and M. Rozali, Fine grained chaos in AdS_{2}gravity, Phys. Rev. Lett.120 (2018) 121601 [arXiv:1712.04963] [INSPIRE].
[59] Y.-H. Qi, Y. Seo, S.-J. Sin and G. Song, Schwarzian correction to quantum correlation in SYK model, arXiv:1804.06164 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.