×

Entanglement dynamics in 2D CFT with boundary: entropic origin of JT gravity and Schwarzian QM. (English) Zbl 1416.83072

Summary: We study the dynamics of the geometric entanglement entropy of a 2D CFT in the presence of a boundary. We show that this dynamics is governed by local equations of motion, that take the same form as 2D Jackiw-Teitelboim gravity coupled to the CFT. If we assume that the boundary has a small thickness \( \epsilon \) and constant boundary entropy, we derive that its location satisfies the equations of motion of Schwarzian quantum mechanics with coupling constant \( C = c \epsilon /12 \pi \). We rederive this result via energy-momentum conservation.

MSC:

83C80 Analogues of general relativity in lower dimensions
81P40 Quantum coherence, entanglement, quantum correlations
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81S10 Geometry and quantization, symplectic methods

References:

[1] T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett.75 (1995) 1260 [gr-qc/9504004] [INSPIRE]. · Zbl 1020.83609
[2] R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev.D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].
[3] S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A general proof of the quantum null energy condition, arXiv:1706.09432 [INSPIRE]. · Zbl 1423.81149
[4] S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Energy density from second shape variations of the von Neumann entropy, Phys. Rev.D 98 (2018) 086013 [arXiv:1802.02584] [INSPIRE].
[5] J. Koeller, S. Leichenauer, A. Levine and A. Shahbazi-Moghaddam, Local modular hamiltonians from the quantum null energy condition, Phys. Rev.D 97 (2018) 065011 [arXiv:1702.00412] [INSPIRE].
[6] R. Jackiw, Lower dimensional gravity, Nucl. Phys.B 252 (1985) 343 [INSPIRE].
[7] C. Teitelboim, Gravitation and hamiltonian structure in two space-time dimensions, Phys. Lett.B 126 (1983) 41.
[8] J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE]. · Zbl 1390.83104
[9] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at the Fundamental Physics Prize Symposium, November 10, Stanford University, Stanford, U.S.A. (2014).
[10] A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk given at KITP, February 12, Santa Barbara, U.S.A. (2015).
[11] A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27, Santa Barbara, U.S.A. (2015).
[12] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
[13] K. Jensen, Chaos in AdS2holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
[14] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112
[15] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys.B 424 (1994) 443 [hep-th/9403108] [INSPIRE]. · Zbl 0990.81564
[16] J. Cardy and E. Tonni, Entanglement hamiltonians in two-dimensional conformal field theory, J. Stat. Mech.1612 (2016) 123103 [arXiv:1608.01283] [INSPIRE]. · Zbl 1456.81364 · doi:10.1088/1742-5468/2016/12/123103
[17] J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE]. · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[18] H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP05 (2011) 036 [arXiv:1102.0440] [INSPIRE]. · Zbl 1296.81073 · doi:10.1007/JHEP05(2011)036
[19] A.C. Wall, A proof of the generalized second law for rapidly changing fields and arbitrary horizon slices, Phys. Rev.D 85 (2012) 104049 [Erratum ibid.D 87 (2013) 069904] [arXiv:1105.3445] [INSPIRE].
[20] A.C. Wall, Testing the generalized second law in 1 + 1 dimensional conformal vacua: an argument for the causal horizon, Phys. Rev.D 85 (2012) 024015 [arXiv:1105.3520] [INSPIRE].
[21] A.C. Wall, A survey of black hole thermodynamics, arXiv:1804.10610 [INSPIRE].
[22] Z.U. Khandker, S. Kundu and D. Li, Bulk matter and the boundary quantum null energy condition, JHEP08 (2018) 162 [arXiv:1803.03997] [INSPIRE]. · Zbl 1396.83009 · doi:10.1007/JHEP08(2018)162
[23] A. Almheiri and J. Polchinski, Models of AdS2backreaction and holography, JHEP11 (2015) 014 [arXiv:1402.6334] [INSPIRE]. · Zbl 1388.83079
[24] T.D. Chung and H.L. Verlinde, Dynamical moving mirrors and black holes, Nucl. Phys.B 418 (1994) 305 [hep-th/9311007] [INSPIRE]. · Zbl 1009.81525
[25] R. Bott, On the characteristic classes of groups of diffeomorphisms, Enseign. Math.23 (1977) 209. · Zbl 0367.57004
[26] T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP08 (2017) 136 [arXiv:1705.08408] [INSPIRE]. · Zbl 1381.83089 · doi:10.1007/JHEP08(2017)136
[27] G. Turiaci and H. Verlinde, On CFT and quantum chaos, JHEP12 (2016) 110 [arXiv:1603.03020] [INSPIRE]. · Zbl 1390.81191 · doi:10.1007/JHEP12(2016)110
[28] J. Haegeman, T.J. Osborne, H. Verschelde and F. Verstraete, Entanglement renormalization for quantum fields in real space, Phys. Rev. Lett.110 (2013) 100402 [arXiv:1102.5524] [INSPIRE]. · doi:10.1103/PhysRevLett.110.100402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.