×

Multiple shocks. (English) Zbl 1390.83222

Summary: Using gauge/gravity duality, we explore a class of states of two CFTs with a large degree of entanglement, but with very weak local two-sided correlation. These states are constructed by perturbing the thermofield double state with thermal-scale operators that are local at different times. Acting on the dual black hole geometry, these perturbations create an intersecting network of shock waves, supporting a very long wormhole. Chaotic CFT dynamics and the associated fast scrambling time play an essential role in determining the qualitative features of the resulting geometries.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory

References:

[1] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE]. · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[2] J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. · doi:10.1088/1126-6708/2003/04/021
[3] W. Israel, Thermo field dynamics of black holes, Phys. Lett.A 57 (1976) 107 [INSPIRE]. · doi:10.1016/0375-9601(76)90178-X
[4] M. Van Raamsdonk, Evaporating Firewalls, JHEP11 (2014) 038 [arXiv:1307.1796] [INSPIRE]. · Zbl 1333.83117 · doi:10.1007/JHEP11(2014)038
[5] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, Rindler Quantum Gravity, Class. Quant. Grav.29 (2012) 235025 [arXiv:1206.1323] [INSPIRE]. · Zbl 1258.83029 · doi:10.1088/0264-9381/29/23/235025
[6] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP03 (2014) 067 [arXiv:1306.0622] [INSPIRE]. · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[7] Y. Sekino and L. Susskind, Fast Scramblers, JHEP10 (2008) 065 [arXiv:0808.2096] [INSPIRE]. · doi:10.1088/1126-6708/2008/10/065
[8] L. Susskind, Addendum to Fast Scramblers, arXiv:1101.6048 [INSPIRE].
[9] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP09 (2007) 120 [arXiv:0708.4025] [INSPIRE]. · doi:10.1088/1126-6708/2007/09/120
[10] K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev.D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].
[11] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[12] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[13] I.A. Morrison and M.M. Roberts, Mutual information between thermo-field doubles and disconnected holographic boundaries, JHEP07 (2013) 081 [arXiv:1211.2887] [INSPIRE]. · Zbl 1342.83195 · doi:10.1007/JHEP07(2013)081
[14] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[15] V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev.D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].
[16] J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev.D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].
[17] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev.D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].
[18] L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP02 (2004) 014 [hep-th/0306170] [INSPIRE]. · doi:10.1088/1126-6708/2004/02/014
[19] J. Kaplan, Extracting data from behind horizons with the AdS/CFT correspondence, hep-th/0402066 [INSPIRE].
[20] G. Festuccia and H. Liu, Excursions beyond the horizon: Black hole singularities in Yang-Mills theories. I., JHEP04 (2006) 044 [hep-th/0506202] [INSPIRE]. · doi:10.1088/1126-6708/2006/04/044
[21] D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett.111 (2013) 171301 [arXiv:1307.4706] [INSPIRE]. · doi:10.1103/PhysRevLett.111.171301
[22] J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev.A 43 (1991) 2046. · doi:10.1103/PhysRevA.43.2046
[23] M. Srednicki, Chaos and quantum thermalization, Phys. Rev.E 50 (1994) 888 [cond-mat/9403051].
[24] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE]. · Zbl 1338.83057 · doi:10.1002/prop.201300020
[25] D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black holes, JHEP02 (2007) 068 [hep-th/0701108] [INSPIRE]. · doi:10.1088/1126-6708/2007/02/068
[26] D. Bak, M. Gutperle and A. Karch, Time dependent black holes and thermal equilibration, JHEP12 (2007) 034 [arXiv:0708.3691] [INSPIRE]. · Zbl 1246.83094 · doi:10.1088/1126-6708/2007/12/034
[27] L. Susskind, Butterflies on the Stretched Horizon, arXiv:1311.7379 [INSPIRE].
[28] T. Dray and G. ’t Hooft, The Gravitational Shock Wave of a Massless Particle, Nucl. Phys.B 253 (1985) 173 [INSPIRE].
[29] M. Hotta and M. Tanaka, Shock wave geometry with nonvanishing cosmological constant, Class. Quant. Grav.10 (1993) 307 [INSPIRE]. · doi:10.1088/0264-9381/10/2/012
[30] K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys.B 436 (1995) 721 [hep-th/9408169] [INSPIRE]. · Zbl 1052.83521 · doi:10.1016/0550-3213(94)00573-W
[31] R.-G. Cai and J.B. Griffiths, Null particle solutions in three-dimensional (anti-)de Sitter spaces, J. Math. Phys.40 (1999) 3465 [gr-qc/9905011] [INSPIRE]. · Zbl 0988.83024 · doi:10.1063/1.532900
[32] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and Transhorizon Measurements in AdS/CFT, JHEP10 (2012) 165 [arXiv:1201.3664] [INSPIRE]. · doi:10.1007/JHEP10(2012)165
[33] T. Dray and G. ’t Hooft, The Effect of Spherical Shells of Matter on the Schwarzschild Black Hole, Commun. Math. Phys.99 (1985) 613 [INSPIRE].
[34] I.H. Redmount, Blue-Sheet Instability of Schwarzschild Wormholes, Prog. Theor. Phys.73 (1985) 1401. · Zbl 0979.83503 · doi:10.1143/PTP.73.1401
[35] E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev.D 41 (1990) 1796 [INSPIRE].
[36] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP09 (2013) 018 [arXiv:1304.6483] [INSPIRE]. · doi:10.1007/JHEP09(2013)018
[37] D. Amati, M. Ciafaloni and G. Veneziano, Superstring Collisions at Planckian Energies, Phys. Lett.B 197 (1987) 81 [INSPIRE]. · doi:10.1016/0370-2693(87)90346-7
[38] D. Amati, M. Ciafaloni and G. Veneziano, Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions, Int. J. Mod. Phys.A 3 (1988) 1615 [INSPIRE]. · doi:10.1142/S0217751X88000710
[39] G. Veneziano, String-theoretic unitary S-matrix at the threshold of black-hole production, JHEP11 (2004) 001 [hep-th/0410166] [INSPIRE]. · doi:10.1088/1126-6708/2004/11/001
[40] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole Complementarity, Phys. Rev.D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
[41] P. Hayden, D.W. Leung and A. Winter, Aspects of generic entanglement, Commun. Math. Phys.265 (2006) 95 [quant-ph/0407049]. · Zbl 1107.81011 · doi:10.1007/s00220-006-1535-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.