×

A priori and a posteriori error estimates for the quad-curl eigenvalue problem. (English) Zbl 1490.65256

Summary: In this paper, we consider a priori and a posteriori error estimates of the \(H(\mathrm{curl}^2)\)-conforming finite element when solving the quad-curl eigenvalue problem. An a priori estimate of eigenvalues with convergence order \(2(s-1)\) is obtained if the corresponding eigenvector \(u\in H^{s-1}(\Omega)\) and \(\nabla\times u\in H^{s}(\Omega)\). For the a posteriori estimate, by analyzing the associated source problem, we obtain lower and upper bounds for the errors of eigenvectors in the energy norm and upper bounds for the errors of eigenvalues. Numerical examples are presented for validation.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76W05 Magnetohydrodynamics and electrohydrodynamics

References:

[1] I. Babuška and J. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comput. 52 (1989) 275-297. · Zbl 0675.65108 · doi:10.1090/S0025-5718-1989-0962210-8
[2] I. Babuška and J. Osborn, Eigenvalue Problems. Elsevier (1991) 641-787. · Zbl 0875.65087
[3] R. Beck, R. Hiptmair, R. Hoppe and B. Wohlmuth, Residual based a posteriori error estimators for eddy current computation. ESAIM: M2AN 34 (2000) 159-182. · Zbl 0949.65113 · doi:10.1051/m2an:2000136
[4] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem. IMA J. Numer. Anal. 37 (2017) 1710-1732. · Zbl 1433.65279
[5] D. Boffi, L. Gastaldi, R. Rodríguez and I. Šebestová, A posteriori error estimates for Maxwell’s eigenvalue problem. J. Sci. Comput. 78 (2019) 1250-1271. · Zbl 1417.78005 · doi:10.1007/s10915-018-0808-5
[6] S.C. Brenner, J. Sun and L. Sung, Hodge decomposition methods for a quad-curl problem on planar domains. J. Comput. Sci. 73 (2017) 495-513. · Zbl 1398.65290 · doi:10.1007/s10915-017-0449-0
[7] S.C. Brenner, J. Cui and L. Sung, Multigrid methods based on Hodge decomposition for a quad-curl problem. Comput. Methods Appl. Math. 19 (2019) 215-232. · Zbl 1420.65119 · doi:10.1515/cmam-2019-0011
[8] F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Prob. Imaging 1 (2017) 443-456. · Zbl 1149.35078
[9] F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media. Inverse Prob. 26 (2010). · Zbl 1197.35314
[10] S. Cao, L. Chen and X. Huang, Error analysis of a decoupled finite element method for quad-curl problems. J. Sci. Comput. 90 (2022) 1-25. · Zbl 1479.65026 · doi:10.1007/s10915-021-01713-7
[11] L. Chen, Sobolev Spaces and Elliptic Equations. Course Notes (2016).
[12] H. Chen, J. Li, W. Qiu and C. Wang, A mixed finite element scheme for quad-curl source and eigenvalue problems. Commun. Comput. Phys. 29 (2021) 1125-1151. · Zbl 1473.65279 · doi:10.4208/cicp.OA-2020-0108
[13] G. Chen, W. Qiu and L. Xu, Analysis of an interior penalty DG method for the quad-curl problem. IMA J. Numer. Anal. 41 (2021) 2990-3023. · Zbl 1511.65120 · doi:10.1093/imanum/draa034
[14] S. Christiansen and K. Hu, Generalized finite element systems for smooth differential forms and stokes’ problem. Numer. Math. 140 (2018) 327-371. · Zbl 1402.65153 · doi:10.1007/s00211-018-0970-6
[15] S. Cochez-Dhondt and S. Nicaise, Robust a posteriori error estimation for the Maxwell equations. Comput. Methods Appl. Mech. Eng. 196 (2007) 2583-2595. · Zbl 1173.78317 · doi:10.1016/j.cma.2006.11.025
[16] M. Costabel and A. McIntosh, On bogovski and regularized poincaré integral operators for de rham complexes on lipschitz domains. Math. Z. 265 (2010) 297-320. · Zbl 1197.35338 · doi:10.1007/s00209-009-0517-8
[17] X. Dai, J. Xu and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110 (2008) 313-355. · Zbl 1159.65090
[18] M. Dauge, Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions. Vol 1341. Springer (2006).
[19] A.-S.B.-B. Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell’s equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 2028-2044. · Zbl 0933.78007 · doi:10.1137/S0036139997323383
[20] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Vol 5. Springer Science & Business Media (2012). · Zbl 0585.65077
[21] J. Han, Shifted inverse iteration based multigrid methods for the quad-curl eigenvalue problem. Appl. Math. Comput. 367 (2020) 124770. · Zbl 1433.65332
[22] Q. Hong, J. Hu, S. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30 (2012) 565-578. · Zbl 1289.76053 · doi:10.4208/jcm.1206-m3572
[23] K. Hu, Q. Zhang and Z. Zhang, Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42 (2020) A3859-A3877. · Zbl 1458.65148 · doi:10.1137/20M1333390
[24] K. Hu, Q. Zhang and Z. Zhang, A family of finite element stokes complexes in three dimensions. SIAM J. Numer. Anal. 60 (2022) 222-243. · Zbl 1522.65212 · doi:10.1137/20M1358700
[25] P. Monk, A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100 (1998) 173-190. · Zbl 1023.78004 · doi:10.1016/S0377-0427(98)00187-3
[26] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). · Zbl 1024.78009
[27] P. Monk and J. Sun, Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34 (2012) B247-B264. · Zbl 1246.78020 · doi:10.1137/110839990
[28] S. Nicaise, Singularities of the quad-curl problem. J. Differ. Equ. 264 (2018) 5025-5069. · Zbl 1391.35365 · doi:10.1016/j.jde.2017.12.032
[29] J. Osborn, Spectral approximation for compact operators. Math. Comput. 29 (1975) 712-725. · Zbl 0315.35068 · doi:10.1090/S0025-5718-1975-0383117-3
[30] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput. 77 (2008) 633-649. · Zbl 1136.78016
[31] L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483-493. · Zbl 0696.65007 · doi:10.1090/S0025-5718-1990-1011446-7
[32] J. Sun, Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49 (2011) 1860-1874. · Zbl 1245.65153 · doi:10.1137/100785478
[33] J. Sun, A mixed FEM for the quad-curl eigenvalue problem. Numer. Math. 132 (2016) 185-200. · Zbl 1342.65222 · doi:10.1007/s00211-015-0708-7
[34] J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems. Chapman and Hall/CRC, Boca Raton, FL (2016). · Zbl 1351.65085 · doi:10.1201/9781315372419
[35] Z. Sun, J. Cui, F. Gao and C. Wang, Multigrid methods for a quad-curl problem based on C^0 interior penalty method. Comput. Math. App. 76 (2018) 2192-2211. · Zbl 1442.65397
[36] J. Sun, Q. Zhang and Z. Zhang, A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numer. Math. 59 (2019) 1093-1114. · Zbl 1427.65378 · doi:10.1007/s10543-019-00764-5
[37] R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems. Comput. Methods Appl. Mech. Eng. 176 (1999) 419-440. · Zbl 0935.74072
[38] C. Wang, Z. Sun and J. Cui, A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349 (2019) 23-38. · Zbl 1428.78032
[39] L. Wang, H. Li and Z. Zhang, H(curl^2)-conforming spectral element method for quad-curl problems. Comput. Methods Appl. Math. 21 (2021) 661-681. · Zbl 1473.65319 · doi:10.1515/cmam-2020-0152
[40] L. Wang, W. Shan, H. Li and Z. Zhang, H(curl^2)-conforming quadrilateral spectral element method for quad-curl problems. Math. Models Methods Appl. Sci. 31 (2021) 1951-1986. · Zbl 1478.65137 · doi:10.1142/S0218202521500433
[41] S. Zhang, Mixed schemes for quad-curl equations. ESAIM: M2AN 52 (2018) 147-161. · Zbl 1395.65147 · doi:10.1051/m2an/2018005
[42] S. Zhang, Regular decomposition and a framework of order reduced methods for fourth order problems. Numer. Math. 138 (2018) 241-271. · Zbl 1383.35074 · doi:10.1007/s00211-017-0902-x
[43] Q. Zhang, New conforming finite elements based on the de rham complexes for some fourth-order problems. Ph.D. dissertation (2021).
[44] Q. Zhang, L. Wang and Z. Zhang, H(curl^2)-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41 (2019) A1527-A1547. · Zbl 1422.65420 · doi:10.1137/18M1199988
[45] B. Zheng and J. Xu, A nonconforming finite element method for fourth order curl equations in ℝ^3. Math. Comput. 80 (2011) 1871-1886. · Zbl 1227.78024 · doi:10.1090/S0025-5718-2011-02480-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.