×

Convergence and optimal complexity of adaptive finite element eigenvalue computations. (English) Zbl 1159.65090

The paper deals with an adaptive finite element method for elliptic eigenvalue problems. The authors establish a relationship between the elliptic eigenvalue approximation and the associated boundary value approximation in order to establish a posteriori error estimators for the finite element eigenvalue solutions. After the adaptive algorithm for the finite element eigenvalues is designed, the convergence and optimal complexity of the adaptive finite element eigenvalue computation are proved. Several numerical experiments, supporting the theory, are presented.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65Y20 Complexity and performance of numerical algorithms
Full Text: DOI

References:

[1] Adams R.A. (1975) Sobolev Spaces. Academic Press, New York · Zbl 0314.46030
[2] Arnold D.N., Mukherjee A., Pouly L. (2000) Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22: 431–448 · Zbl 0973.65116 · doi:10.1137/S1064827597323373
[3] Babuska I., Osborn J.E. (1989) Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52: 275–297 · Zbl 0675.65108
[4] Babuska I., Osborn J.E. (1991) Eigenvalue problems. In: Ciarlet P.G., Lions J.L.(eds) Handbook of Numerical Analysis, vol. II.. North Holland, Amsterdam, pp 641–792
[5] Babuska I., Rheinboldt W.C. (1978) Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15: 736–754 · Zbl 0398.65069 · doi:10.1137/0715049
[6] Babuska I., Vogelius M. (1984) Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44: 75–102 · Zbl 0574.65098 · doi:10.1007/BF01389757
[7] Bartels S., Carstensen C. (2002) Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II. Higher order FEM. Math. Comp. 71: 971–994 · Zbl 0997.65127 · doi:10.1090/S0025-5718-02-01412-6
[8] Becker R., Rannacher R. (2001) An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10: 1–102 · Zbl 1105.65349 · doi:10.1017/S0962492901000010
[9] Binev P., Dahmen W., DeVore R. (2004) Adaptive finite element methods with convergence rates. Numer. Math. 97: 219–268 · Zbl 1063.65120 · doi:10.1007/s00211-003-0492-7
[10] Carstensen C. (2005) A unifying theory of a posteriori finite element error control. Numer. Math. 100: 617–637 · Zbl 1100.65089 · doi:10.1007/s00211-004-0577-y
[11] Carstensen C., Bartels S. (2002) Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I. Low order conforming, nonconforming, and mixed FEM. Math. Comp. 71: 945–969 · Zbl 0997.65126 · doi:10.1090/S0025-5718-02-01402-3
[12] Carstensen C., Hoppe R.H.W. (2006) Error reduction and convergence for an adaptive mixed finite element method. Math. Comp. 75: 1033–1042 · Zbl 1094.65112 · doi:10.1090/S0025-5718-06-01829-1
[13] Carstensen C., Hoppe R.H.W. (2006) Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103: 251–266 · Zbl 1101.65102 · doi:10.1007/s00211-005-0658-6
[14] Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. preprint (2007) · Zbl 1176.65122
[15] Chatelin F. (1983) Spectral Approximations of Linear Operators. Academic Press, New York · Zbl 0517.65036
[16] Chen, L., Holst, M., Xu, J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comp. (to appear) (2008) · Zbl 1198.65211
[17] Chen Z., Nochetto R.H. (2000) Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84: 527–548 · Zbl 0943.65075 · doi:10.1007/s002110050009
[18] Ciarlet, P.G., Lions, J.L. (eds.): Finite Element Methods, Volume II of Handbook of Numerical Analysis, vol. II. North Holland, Amsterdam (1991) · Zbl 0712.65091
[19] Dörfler W. (1996) A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33: 1106–1124 · Zbl 0854.65090 · doi:10.1137/0733054
[20] Dörfler W., Wilderotter O. (2000) An adaptive finite element method for a linear elliptic equation with variable coefficients. ZAMM 80: 481–491 · Zbl 0956.65105 · doi:10.1002/1521-4001(200007)80:7<481::AID-ZAMM481>3.0.CO;2-5
[21] Durán R.G., Padra C., Rodríguez R. (2003) A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Mod. Meth. Appl. Sci. 13: 1219–1229 · Zbl 1072.65144 · doi:10.1142/S0218202503002878
[22] Gong X., Shen L., Zhang D., Zhou A. (2008) Finite element approximations for schrödinger equations with applications to electronic structure computations. J. Comput. Math. 26: 310–323 · Zbl 1174.65047
[23] Greiner W. (1994) Quantum Mechanics: An Introduction, 3rd edn. Springer, Berlin · Zbl 0803.00007
[24] Heuveline V., Rannacher R. (2001) A posteriori error control for finite element approximations of ellipic eigenvalue problems. Adv. Comput. Math. 15: 107–138 · Zbl 0995.65111 · doi:10.1023/A:1014291224961
[25] Larson M.G. (2001) A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38: 608–625 · Zbl 0974.65100 · doi:10.1137/S0036142997320164
[26] Lin Q., Xie G. (1981) Accelerating the finite element method in eigenvalue problems. Kexue Tongbao 26: 449–452 (in Chinese)
[27] Mao D., Shen L., Zhou A. (2006) Adaptive finite algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv. Comput. Math. 25: 135–160 · Zbl 1103.65112 · doi:10.1007/s10444-004-7617-0
[28] Maubach J. (1995) Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16: 210–227 · Zbl 0816.65090 · doi:10.1137/0916014
[29] Mekchay K., Nochetto R.H. (2005) Convergence of adaptive finite element methods for general second order linear elliplic PDEs. SIAM J. Numer. Anal. 43: 1803–1827 · Zbl 1104.65103 · doi:10.1137/04060929X
[30] Morin P., Nochetto R.H., Siebert K. (2000) Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38: 466–488 · Zbl 0970.65113 · doi:10.1137/S0036142999360044
[31] Morin P., Nochetto R.H., Siebert K. (2002) Convergence of adaptive finite element methods. SIAM Rev. 44: 631–658 · Zbl 1016.65074 · doi:10.1137/S0036144502409093
[32] Nochetto, R.H.: Adaptive finite element methods for elliptic PDE. Lecture Notes of 2006 CNA Summer School. Carnegie Mellon University, Pittsburgh (2006)
[33] Schneider R., Xu Y., Zhou A. (2006) An analysis of discontinue Galerkin method for elliptic problems. Adv. Comput. Math. 5: 259–286 · Zbl 1099.65116 · doi:10.1007/s10444-004-7619-y
[34] Shen L., Zhou A. (2006) A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J. Sci. Comput. 28: 321–338 · Zbl 1104.65323 · doi:10.1137/040614013
[35] Sloan I.H. (1976) Iterated Galerkin method for eigenvalue problems. SIAM J. Numer. Anal. 13: 753–760 · Zbl 0359.65052 · doi:10.1137/0713061
[36] Stevenson R. (2007) Optimality of a standard adaptive finite element method. Found. Comput. Math. 7: 245–269 · Zbl 1136.65109 · doi:10.1007/s10208-005-0183-0
[37] Stevenson R. (2008) The completion of locally refined simplicial partitions created by bisection. Math. Comp. 77: 227–241 · Zbl 1131.65095 · doi:10.1090/S0025-5718-07-01959-X
[38] Traxler C.T. (1997) An algorithm for adaptive mesh refinement in n dimensions. Computing 59: 115–137 · Zbl 0944.65123 · doi:10.1007/BF02684475
[39] Veeser A. (2002) Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92: 743–770 · Zbl 1016.65083 · doi:10.1007/s002110100377
[40] Verfürth R. (1996) A Riview of a Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, New York · Zbl 0853.65108
[41] Wu H., Chen Z. (2006) Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A 49: 1405–1429 · Zbl 1112.65104 · doi:10.1007/s11425-006-2005-5
[42] Xu J. (1992) Iterative methods by space decomposition and subspace correction. SIAM Rev. 34: 581–613 · Zbl 0788.65037 · doi:10.1137/1034116
[43] Xu J., Zhou A. (2000) Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp. 69: 881–909 · Zbl 0948.65122 · doi:10.1090/S0025-5718-99-01149-7
[44] Xu J., Zhou A. (2001) A two-grid discretization scheme for eigenvalue problems. Math. Comp. 70: 17–25 · Zbl 0959.65119 · doi:10.1090/S0025-5718-99-01180-1
[45] Yan N., Zhou A. (2001) Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190: 4289–4299 · Zbl 0986.65098 · doi:10.1016/S0045-7825(00)00319-4
[46] Yserentant H. (2004) On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98: 731–759 · Zbl 1062.35100 · doi:10.1007/s00211-003-0498-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.