×

Shifted inverse iteration based multigrid methods for the quad-curl eigenvalue problem. (English) Zbl 1433.65332

Summary: This paper is devoted to multgrid methods for solving the quad-curl eigenvalue problem. The multgrid methods based on the Rayleigh quotient iteration and the inverse iteration with fixed shift are proposed. We prove the error estimates for both methods. Numerical experiments confirm our theoretical analysis and validate the efficiency of both methods.

MSC:

65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory

Software:

iFEM
Full Text: DOI

References:

[1] Ainsworth, M.; Coyle, J., Computation of maxwell eigenvalues on curvilinear domains using hp-version nédélec elements, Numer. Math. Adv. Appl., 219-231 (2003) · Zbl 1055.78009
[2] Boffi, D.; Fernandes, P.; Gastaldi, L.; Perugia, I., Computational models of electromagnetic resonantors: analysis of edge element approximation, SIAM J. Numer. Anal., 36, 1264-1290 (1999) · Zbl 1025.78014
[3] Buffa, A.; Ciarlet, P.; Jamelot, E., Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements, Numer. Math., 113, 497-518 (2009) · Zbl 1180.78048
[4] Buffa, A.; Houston, P.; Perugia, I., Discontinuous Galerkin computation of the maxwell eigenvalues on simplicial meshes, J. Comput. Appl. Math., 204, 317-333 (2007) · Zbl 1131.78007
[5] Brenner, S. C.; Li, F.; Sung, L., Nonconforming maxwell Eigensolvers, J. Sci. Comput., 40, 51-85 (2009) · Zbl 1203.65236
[6] Brenner, S. C.; Sun, J.; Sung, L., Hodge decomposition methods for a quad-curl problem on planar domains, J. Sci. Comput. (2017) · Zbl 1398.65290
[7] Babuska, I.; Osborn, J., Eigenvalue problems, (Ciarlet, P. G.; Lions, J. L., Finite Element Methods (Part 1). Finite Element Methods (Part 1), Handbook of Numerical Analysis, 2 (1991), Elsevier Science Publishers: Elsevier Science Publishers North-Holand), 640-787 · Zbl 0875.65087
[8] Cakoni, F.; Colton, D.; Monk, P.; Sun, J., The inverse electromagnetic scattering problem for anisotropic media, Inverse Probl., 26, 074004 (2010) · Zbl 1197.35314
[9] Chatelin, F., Spectral Approximations of Linear Operators (1983), Academic Press: Academic Press New York · Zbl 0517.65036
[10] Chen, L., iFEM: An Integrated Finite Element Methods Package in MATLAB (2009), University of California at Irvine
[11] Ciarlet, P. G., The finite element methods for elliptic problems, Classics in Applied Mathematics, 40 (2002), SIAM: SIAM Philadelphia · Zbl 0999.65129
[12] Ciarlet, P. G.; Raviart, P. A., A mixed finite element method for the biharmonic equation, Proceedings of the Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, 125-145 (1974), Academic Press: Academic Press New York · Zbl 0337.65058
[13] CiarletJr., P.; Hechme, G., Computing electromagnetic eigenmodes with continuous Galerkin approximations, Comput. Methods Appl. Mech. Eng., 198, 358-365 (2008) · Zbl 1194.78053
[14] Chen, J.; Xu, Y.; Zou, J., An adaptive inverse iteration for maxwell eigenvalue problem based on edge elements, J. Comput. Phys., 229, 2649-2658 (2010) · Zbl 1184.78022
[15] Hiptmair, R., Finite elements in computational electromagnetism, Acta Numer., 11, 237-339 (2002) · Zbl 1123.78320
[16] Hong, Q.; Hun, J.; Shu, S.; Xu, J., A discontinuous Galerkin method for the fourth-order curl problem, J. Comp. Math., 30, 565-578 (2012) · Zbl 1289.76053
[17] Hu, X.; Cheng, X., Acceleration of a two-grid method for eigenvalue problems, Math. Comp., 80, 1287-1301 (2011) · Zbl 1232.65141
[18] Kikuchi, F., Weak formulations for finite element analysis of an electromagnetic eigenvalue problem, Scientific Papers of the College of Arts and Sciences, 38, 43-67 (1988), University of Tokyo · Zbl 0689.65079
[19] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press: Oxford University Press Oxford, UK · Zbl 1024.78009
[20] Monk, P.; Sun, J., Finite element methods for Maxwell’s transmission eigenvalues, SIAM. J. Sci. Comput., 34, B247-B264 (2012) · Zbl 1246.78020
[21] Nédélec, J. C., Mixed finite elements in \(r^3\), Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[22] Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B., Finite element method for eigenvalue problems in electromagnetics, Nasa Sti/Recon Techn. Rep. N, 95 (1995)
[23] Russo, A. D.; Alonso, A., Finite element approximation of maxwell eigenproblems on curved Lipschitz polyhedral domains, Appl. Numer. Math., 59, 1796-1822 (2009) · Zbl 1172.65061
[24] Sun, J., A mixed FEM for the quad-curl eigenvalue problem, Numer. Math., 132, 185-200 (2016) · Zbl 1342.65222
[25] Sun, J.; Xu, L., Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems, Inverse Probl., 29, 104013 (2013) · Zbl 1286.65149
[26] Xu, J.; Zhou, A., A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70, 17-25 (1999) · Zbl 0959.65119
[27] Yang, Y., Finite Element Methods for Eigenvalue Problems(in Chinese) (2012), Science Press: Science Press Beijing
[28] Yang, Y.; Bi, H.; Han, J.; Yu, Y., The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput., 37, A2583-A2606 (2015) · Zbl 1327.65229
[29] Yang, Y.; Bi, H., A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal., 49, 1602-1624 (2011) · Zbl 1236.65143
[30] Zheng, B.; Hu, B.; Xu, Q., A nonconforming element method for fourth order curl equations in equations in \(R^3\), Math. Comput., 276, 1871-1886 (2011) · Zbl 1227.78024
[31] Zhang, S., Mixed schemes for quad-curl equations, ESAIM: M2AN, 52, 147-161 (2018) · Zbl 1395.65147
[32] Zhou, J.; Hu, X.; Zhong, L.; Shu, S.; Chen, L., Two-grid methods for maxwell eigenvalue problem, SIAM J. Numer. Anal., 52, 4, 2027-2047 (2014) · Zbl 1304.78015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.