×

A mixed finite element scheme for quad-curl source and eigenvalue problems. (English) Zbl 1473.65279

Summary: The quad-curl problem arises in the resistive magnetohydrodynamics (MHD) and the electromagnetic interior transmission problem. In this paper we study a new mixed finite element scheme using Nédélec’s edge elements to approximate both the solution and its curl for quad-curl problem on Lipschitz polyhedral domains. We impose element-wise stabilization instead of stabilization along mesh interfaces. Thus our scheme can be implemented as easy as standard Nédélec’s methods for Maxwell’s equations. Via a discrete energy norm stability due to element-wise stabilization, we prove optimal convergence under a low regularity condition. We also extend the mixed finite element scheme to the quad-curl eigenvalue problem and provide corresponding convergence analysis based on that of source problem. Numerical examples are provided to show the viability and accuracy of the proposed method for quad-curl source problem.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
Full Text: DOI

References:

[1] C. Amrouche, C. Bernardi, M. Dauge, and V. Girault. Vector potentials in three-dimensional non-smooth domains. Mathematical Methods in the Applied Sciences, 21(9):823-864, 1998. · Zbl 0914.35094
[2] I. Babuska and J. Osborn. Eigenvalue problems, in “Handbook of Numerical Analysis”, vol. II. PG Ciarlet and JL Lions Editions, Elsevier science Publishers BV (North-Holland), pages 645-785, 1991.
[3] D. Biskamp. Magnetic Reconnection in Plasmas. Number 3. Cambridge University Press, 2005. · Zbl 0891.76094
[4] S. C. Brenner, J. Sun, and L.-Y. Sung. Hodge decomposition methods for a quad-curl problem on planar domains. Journal of Scientific Computing, 73(2-3):495-513, 2017. · Zbl 1398.65290
[5] S. C. Brenner, J. Cui, and L.-Y. Sung. Multigrid methods based on Hodge decomposition for a quad-curl problem. Computational Methods in Applied Mathematics, 19(2):215-232, 2019. · Zbl 1420.65119
[6] F. Cakoni, D. Colton, P. Monk, and J. Sun. The inverse electromagnetic scattering problem for anisotropic media. Inverse Problems, 26(7):074004, 2010. · Zbl 1197.35314
[7] F. Cakoni and H. Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 1(3):443-456, 2007. · Zbl 1149.35078
[8] L. Chacón, A. N. Simakov, and A. Zocco. Steady-state properties of driven magnetic re-connection in 2D electron magnetohydrodynamics. Physical Review Letters, 99(23):235001, 2007.
[9] G. Chen, W. Qiu, and L. Xu. Analysis of an interior penalty DG method for the quad-curl problem. IMA Journal of Numerical Analysis, accepted. · Zbl 1511.65120
[10] H. Chen, W. Qiu, and K. Shi. A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Computer Methods in Applied Mechanics and Engineering, 333:287-310, 2018. · Zbl 1440.78005
[11] M. Costabel. A coercive bilinear form for Maxwell’s equations. Journal of mathematical anal-ysis and applications, 157(2):527-541, 1991. · Zbl 0738.35095
[12] B. Gong, J. Han, J. Sun, and Z. Zhang. A shifted-inverse adaptive multigrid method for the elastic eigenvalue problem. Communications in Computational Physics, 27(1):251-273, 2020. · Zbl 1473.65280
[13] P. Grisvard. Elliptic problems in nonsmooth domains. 1985. Pitman, Boston, 1985. · Zbl 0695.35060
[14] R. Hipmair. Finite elements in computational electromagnetics. Acta Numerica, 11:237-399, 2002. · Zbl 1123.78320
[15] Q. Hong, J. Hu, S. Shu, and J. Xu. A discontinuous Galerkin method for the fourth-order curl problem. Journal of Computational Mathematics, 30(6):565-578, 2012. · Zbl 1289.76053
[16] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, 2000. · Zbl 0948.35001
[17] P. Monk and J. Sun. Finite element methods for Maxwell’s transmission eigenvalues. SIAM Journal on Scientific Computing, 34(3):B247-B264, 2012. · Zbl 1246.78020
[18] J.-C. Nédélec. Mixed finite elements in R 3 . Numerische Mathematik, 35(3):315-341, 1980. · Zbl 0419.65069
[19] J.-C. Nédélec. A new family of mixed finite elements in R 3 . Numerische Mathematik, 50(1):57-81, 1986. · Zbl 0625.65107
[20] S. Nicaise. Singularities of the quad curl problem. Journal of Differential Equations, 2018. · Zbl 1391.35365
[21] J. Sun. A mixed FEM for the quad-curl eigenvalue problem. Numerische Mathematik, 132(1):185-200, 2016. · Zbl 1342.65222
[22] Z. Sun, J. Cui, F. Gao, and C. Wang, Multigrid methods for a quad-curl problem based on C 0 interior penalty method. Computers and Mathematics with Applications, 76(9):2192-2211, 2018. · Zbl 1442.65397
[23] J. Sun, Q. Zhang, and Z. Zhang. A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numerical Mathematics, 59(4):1093-1114, 2019. · Zbl 1427.65378
[24] C. Wang, Z. Sun, and J. Cui. A new error analysis of a mixed finite element method for the quad-curl problem. Applied Mathematics and Computation, 349:23-38, 2019. · Zbl 1428.78032
[25] Q. Zhang, L. Wang, and Z. Zhang. H(curl 2 )-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM Journal on Scientific Computing, 41(3):A1527-A1547, 2019. · Zbl 1422.65420
[26] S. Zhang. Mixed schemes for quad-curl equations. ESAIM: Mathematical Modelling and Nu-merical Analysis, 52(1):147-161, 2018. · Zbl 1395.65147
[27] B. Zheng, Q. Hu, and J. Xu. A nonconforming finite element method for fourth order curl equations in R 3 . Mathematics of Computation, 80(276):1871-1886, 2011. · Zbl 1227.78024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.