×

Mixed schemes for quad-curl equations. (English) Zbl 1395.65147

Summary: In this paper, mixed schemes are presented for two variants of quad-curl equations. Specifically, stable equivalent mixed formulations for the model problems are presented, which can be discretized by finite elements of low regularity and of low degree. The regularities of the mixed formulations and thus equivalently the primal formulations are established, and some finite elements examples are given which can exploit the regularity of the solutions to an optimal extent.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76W05 Magnetohydrodynamics and electrohydrodynamics
35Q35 PDEs in connection with fluid mechanics

References:

[1] D.N Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006) 1-155. · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[2] D. Boffi, Fortin operator and discrete compactness for edge elements. Numer. Math.87 (2000) 229-246. · Zbl 0967.65106 · doi:10.1007/s002110000182
[3] D. Boffi, F. Brezzi and M. Fortin. Mixed Finite Element Methods and Applications, Vol. 44. Springer (2013). · Zbl 1277.65092 · doi:10.1007/978-3-642-36519-5
[4] S.C. Brenner, J. Sun and L.-Y. Sung, Hodge decomposition methods for a quad-curl problem on planar domains. J. Sci. Comput.73 (2017) 495-513. · Zbl 1398.65290 · doi:10.1007/s10915-017-0449-0
[5] F. Cakoni and H. Haddar, A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Probl. Imaging1 (2007) 443. · Zbl 1149.35078 · doi:10.3934/ipi.2007.1.443
[6] F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl.26 (2010) 074004. · Zbl 1197.35314 · doi:10.1088/0266-5611/26/7/074004
[7] L. Chacón, A.N. Simakov and A. Zocco, Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics. Phys. Rev. Lett.99 (2007) 235001. · doi:10.1103/PhysRevLett.99.235001
[8] L. Chen, Multigrid methods for saddle point systems using constrained smoothers. Comput. Math. Appl.70 (2015) 2854-2866. · Zbl 1443.65298 · doi:10.1016/j.camwa.2015.09.020
[9] L. Chen, X. Hu, M. Wang and J. Xu, A multigrid solver based on distributive smoother and residual overweighting for Oseen problems. Numer. Math. Theory Methods Appl.8 (2015) 237-252. · Zbl 1363.65155 · doi:10.4208/nmtma.2015.w09si
[10] L. Chen, Y. Wu, L. Zhong and J. Zhou, Multigrid Preconditioners for Mixed Finite Element Methods of Vector Laplacian. Preprint (2016). · Zbl 1407.65318
[11] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. (1978). · Zbl 0383.65058
[12] P.G. Ciarlet and P.-A. Raviart, A mixed finite element method for the biharmonic equation, in Proc. of Symposium on Mathematical Aspects of Finite Elements in PDE (1974) 125-145. · Zbl 0337.65058
[13] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Vol. 5. Springer (1986). · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[14] R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer.11 (2002) 237-339. · Zbl 1123.78320 · doi:10.1017/S0962492902000041
[15] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer. Anal.45 (2007) 2483-2509. · Zbl 1153.78006 · doi:10.1137/060660588
[16] Q. Hong, J. Hu, S. Shu and J. Xu, A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math.30 (2012) 565-578. · Zbl 1289.76053 · doi:10.4208/jcm.1206-m3572
[17] F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism. Comput. Methods Appl. Mech. Eng.64 (1987) 509-521. · Zbl 0644.65087 · doi:10.1016/0045-7825(87)90053-3
[18] F. Kikuchi, Mixed formulations for finite element analysis of magnetostatic and electrostatic problems. Jpn. J. Appl. Math.6 (1989) 209-221. · Zbl 0679.65090 · doi:10.1007/BF03167879
[19] Z. Li and S. Zhang, A stable mixed element method for biharmonic equation with first-order function spaces. Comput. Methods Appl. Math.17 (2017) 601-616. · Zbl 1437.35394
[20] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford University Press (2003). · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[21] P. Monkand J. Sun, Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput.34 (2012) B247-B264. · Zbl 1246.78020 · doi:10.1137/110839990
[22] J.-C. Nédélec, Mixed finite elements in R\^{}{3}. Numer. Math.35 (1980) 315-341. · Zbl 0419.65069 · doi:10.1007/BF01396415
[23] M. Neilan, Discrete and conforming smooth de Rham complexes in three dimensions. Math. Comput.84 (2015) 2059-2081. · Zbl 1319.65115 · doi:10.1090/S0025-5718-2015-02958-5
[24] S. Nicaise, Regularity of the solutions of elliptic systems in polyhedral domains. Bull. Belg. Math. Soc. Simon Stevin4 (1997) 411-430. · Zbl 0918.35031
[25] S. Nicaise, Singularities of the Quad Curl Problem. HALpreprint (2016). · Zbl 1391.35365
[26] S.K. Park and X.-L. Gao. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys.59 (2008) 904-917. · Zbl 1157.74014 · doi:10.1007/s00033-006-6073-8
[27] T. Rusten and R. Winther, A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl.13 (1992) 887-904. · Zbl 0760.65033 · doi:10.1137/0613054
[28] J. Sun, A mixed fem for the quad-curl eigenvalue problem. Numer. Math.132 (2016) 185-200. · Zbl 1342.65222 · doi:10.1007/s00211-015-0708-7
[29] J. Sun and L. Xu, Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems. Inverse Probl.29 (2013) 104013. · Zbl 1286.65149 · doi:10.1088/0266-5611/29/10/104013
[30] X.-C. Tai and R. Winther, A discrete de Rham complex with enhanced smoothness. Calcolo43 (2006) 287-306. · Zbl 1168.76311 · doi:10.1007/s10092-006-0124-6
[31] M. Wang and J. Xu, Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comput.76 (2007) 1-18. · Zbl 1125.65105 · doi:10.1090/S0025-5718-06-01889-8
[32] M. Wang, Z.-C. Shi and J. Xu, A new class of Zienkiewicz-type non-conforming element in any dimensions. Numer. Math.106 (2007) 335-347. · Zbl 1118.65124 · doi:10.1007/s00211-007-0063-4
[33] M. Wang, Z.-C. Shi and J. Xu, Some n-rectangle nonconforming elements for fourth order elliptic equations. J. Comput. Math.25 (2007) 408-420. · Zbl 1142.65451
[34] J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev.34 (1992) 581-613. · Zbl 0788.65037 · doi:10.1137/1034116
[35] J. Xu, Fast poisson-based solvers for linear and nonlinear PDEs, in Proc. of the International Congress of Mathematics (2010) Vol. 4, 2886-2912. · Zbl 1228.65233
[36] F. Yang, A.C.M. Chong, D.C.C. Lam and P. Tong, Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct.39 (2002) 2731-2743. · Zbl 1037.74006 · doi:10.1016/S0020-7683(02)00152-X
[37] A. Ženíšek, Polynomial approximation on tetrahedrons in the finite element method. J. Approx. Theory7 (1973) 334-351. · Zbl 0279.41005 · doi:10.1016/0021-9045(73)90036-1
[38] S. Zhang, A family of 3D continuously differentiable finite elements on tetrahedral grids. Appl. Numer. Math.59 (2009) 219-233. · Zbl 1205.76164 · doi:10.1016/j.apnum.2008.02.002
[39] S. Zhang, Regular decomposition and a framework of order reduced methods for fourth order problems. Numer. Math.138 (2018) 241-271. · Zbl 1383.35074 · doi:10.1007/s00211-017-0902-x
[40] S. Zhang, Y. Xi and X. Ji, A multi-level mixed element method for the eigenvalue problem of biharmonic equation. J. Sci. Comput. (2017). · Zbl 1395.65132
[41] B. Zheng, Q. Hu and J. Xu, A nonconforming finite element method for fourth order curl equations in . Math. Comput.80 (2011) 1871-1886. · Zbl 1227.78024 · doi:10.1090/S0025-5718-2011-02480-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.