×

Generalized finite element systems for smooth differential forms and Stokes’ problem. (English) Zbl 1402.65153

Summary: We provide both a general framework for discretizing de Rham sequences of differential forms of high regularity, and some examples of finite element spaces that fit in the framework. The general framework is an extension of the previously introduced notion of finite element systems, and the examples include conforming mixed finite elements for Stokes’ equation. In dimension 2 we detail four low order finite element complexes and one infinite family of high order finite element complexes. In dimension 3 we define one low order complex, which may be branched into Whitney forms at a chosen index. Stokes pairs with continuous or discontinuous pressure are provided in arbitrary dimension. The finite element spaces all consist of composite polynomials. The framework guarantees some nice properties of the spaces, in particular the existence of commuting interpolators. It also shows that some of the examples are minimal spaces.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
58A12 de Rham theory in global analysis
76D07 Stokes and related (Oseen, etc.) flows

References:

[1] Alfeld, P., A trivariate clough-tocher scheme for tetrahedral data, Comput. Aided Geom. Des., 1, 169-181, (1984) · Zbl 0566.65003 · doi:10.1016/0167-8396(84)90029-3
[2] Alfeld, P.; Sorokina, T., Linear differential operators on bivariate spline spaces and spline vector fields, BIT, 56, 15-32, (2016) · Zbl 1342.41010 · doi:10.1007/s10543-015-0557-x
[3] Arnold, DN; Douglas, J.; Gupta, CP, A family of higher order mixed finite element methods for plane elasticity, Numer. Math., 45, 1-22, (1984) · Zbl 0558.73066 · doi:10.1007/BF01379659
[4] Arnold, DN; Falk, RS; Winther, R., Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15, 1-155, (2006) · Zbl 1185.65204 · doi:10.1017/S0962492906210018
[5] Arnold, DN; Qin, J., Quadratic velocity/linear pressure Stokes elements, Adv. Comput. Methods Partial Differ. Equ., 7, 28-34, (1992)
[6] Bernardi, C.; Raugel, G., Analysis of some finite elements for the Stokes problem, Math. Comput., 44, 71-79, (1985) · Zbl 0563.65075 · doi:10.1090/S0025-5718-1985-0771031-7
[7] Brenner, SC, Forty years of the Crouzeix-Raviart element, Numer. Methods Partial Differ. Equ., 31, 367-396, (2015) · Zbl 1310.65142 · doi:10.1002/num.21892
[8] Christiansen, SH, Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numer. Math., 107, 87-106, (2007) · Zbl 1127.65085 · doi:10.1007/s00211-007-0081-2
[9] Christiansen, SH, A construction of spaces of compatible differential forms on cellular complexes, Math. Models Methods Appl. Sci., 18, 739-757, (2008) · Zbl 1153.65005 · doi:10.1142/S021820250800284X
[10] Christiansen, S.H.: Foundations of Finite Element Methods for Wave Equations of Maxwell Type. Applied Wave Mathematics, pp. 335-393. Springer, Berlin (2009) · Zbl 1191.74047
[11] Christiansen, SH; Gillette, A., Constructions of some minimal finite element systems, Math. Model. Numer. Anal., 50, 833-850, (2016) · Zbl 1343.65135 · doi:10.1051/m2an/2015089
[12] Christiansen, SH; Munthe-Kaas, HZ; Owren, B., Topics in structure-preserving discretization, Acta Numer., 20, 1-119, (2011) · Zbl 1233.65087 · doi:10.1017/S096249291100002X
[13] Christiansen, SH; Rapetti, F., On high order finite element spaces of differential forms, Math. Comput., 85, 517-548, (2016) · Zbl 1332.65163
[14] Christiansen, SH; Winther, R., Smoothed projections in finite element exterior calculus, Math. Comput., 77, 813-829, (2008) · Zbl 1140.65081 · doi:10.1090/S0025-5718-07-02081-9
[15] Ciarlet, PG, Sur l’élément de clough et tocher, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8, 19-27, (1974) · Zbl 0306.65070
[16] Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, vol. II, p. 17-351. North-Holland, Amsterdam (1991) · Zbl 0875.65086
[17] Demkowicz, L.; Babuška, I., \(p\) interpolation error estimates for edge finite elements of variable order in two dimensions, SIAM J. Numer. Anal., 41, 1195-1208, (2003) · Zbl 1067.78016 · doi:10.1137/S0036142901387932
[18] Demkowicz, L.; Buffa, A., \(H^1\), \(H({\rm curl})\) and \(H({\rm div})\)-conforming projection-based interpolation in three dimensions. quasi-optimal \(p\)-interpolation estimates, Comput. Methods Appl. Mech. Eng., 194, 267-296, (2005) · Zbl 1143.78365
[19] Douglas, J.; Dupont, T.; Percell, P.; Scott, R., A family of \(C^{1}\) finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems, RAIRO Anal. Numér., 13, 227-255, (1979) · Zbl 0419.65068 · doi:10.1051/m2an/1979130302271
[20] Falk, RS; Neilan, M., Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., 51, 1308-1326, (2013) · Zbl 1268.76032 · doi:10.1137/120888132
[21] Godement, R.: Topologie algébrique et théorie des faisceaux. Hermann, Paris, 1973. Troisième édition revue et corrigée, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252 (1973) · Zbl 0275.55010
[22] Guzmán, J.; Neilan, M., Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal., 34, 1489-1508, (2014) · Zbl 1305.76056 · doi:10.1093/imanum/drt053
[23] Guzmán, J.; Neilan, M., Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comput., 83, 15-36, (2014) · Zbl 1322.76041 · doi:10.1090/S0025-5718-2013-02753-6
[24] Hiptmair, R., Canonical construction of finite elements, Math. Comput., 68, 1325-1346, (1999) · Zbl 0938.65132 · doi:10.1090/S0025-5718-99-01166-7
[25] Lai, M.-J., Schumaker, L.L.: Spline Functions on Triangulations. Encyclopedia of Mathematics and its Applications, vol. 110. Cambridge University Press, Cambridge (2007) · Zbl 1185.41001 · doi:10.1017/CBO9780511721588
[26] Lang, S.: Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. Springer, New York (1999) · Zbl 0932.53001 · doi:10.1007/978-1-4612-0541-8
[27] Nédélec, J-C, Mixed finite elements in \({ R}^{3}\), Numer. Math., 35, 315-341, (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[28] Nédélec, J-C, Éléments finis mixtes incompressibles pour l’équation de Stokes dans \({ R}^{3}\), Numer. Math., 39, 97-112, (1982) · Zbl 0488.76038 · doi:10.1007/BF01399314
[29] Neilan, M., Discrete and conforming smooth de Rham complexes in three dimensions, Math. Comput., 84, 2059-2081, (2015) · Zbl 1319.65115 · doi:10.1090/S0025-5718-2015-02958-5
[30] Percell, P., On cubic and quartic clough-tocher finite elements, SIAM J. Numer. Anal., 13, 100-103, (1976) · Zbl 0319.65064 · doi:10.1137/0713011
[31] Qin, J.: On the convergence of some low order mixed finite elements for incompressible fluids. Ph.D. Thesis, The Pennsylvania State University (1994)
[32] Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical aspects of finite element methods (Proceedings Conference on Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292-315. Lecture Notes in Mathematics, Vol. 606. Springer, Berlin (1977) · Zbl 0362.65089
[33] Scott, LR; Vogelius, M., Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials, RAIRO Modél. Math. Anal. Numér., 19, 111-143, (1985) · Zbl 0608.65013 · doi:10.1051/m2an/1985190101111
[34] Stenberg, R., Analysis of mixed finite elements methods for the Stokes problem: a unified approach, Math. Comput., 42, 9-23, (1984) · Zbl 0535.76037
[35] Walkington, NJ, A \(C^1\) tetrahedral finite element without edge degrees of freedom, SIAM J. Numer. Anal., 52, 330-342, (2014) · Zbl 1290.65118 · doi:10.1137/130912013
[36] Worsey, AJ; Farin, G., An \(n\)-dimensional clough-tocher interpolant, Constr. Approx., 3, 99-110, (1987) · Zbl 0631.41003 · doi:10.1007/BF01890556
[37] Worsey, AJ; Piper, B., A trivariate powell-sabin interpolant, Comput. Aided Geom. Des., 5, 177-186, (1988) · Zbl 0654.65008 · doi:10.1016/0167-8396(88)90001-5
[38] Zhang, S., A new family of stable mixed finite elements for the 3d Stokes equations, Math. Comput., 74, 543-554, (2005) · Zbl 1085.76042 · doi:10.1090/S0025-5718-04-01711-9
[39] Zhang, S., On the P1 powell-sabin divergence-free finite element for the Stokes equations, J. Comput. Math., 26, 456-470, (2008) · Zbl 1174.65039
[40] Zhang, S., Quadratic divergence-free finite elements on powell-sabin tetrahedral grids, Calcolo, 48, 211-244, (2011) · Zbl 1232.65151 · doi:10.1007/s10092-010-0035-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.