×

Turbulence theories and statistical closure approaches. (English) Zbl 07408905

Summary: When discussing research in physics and in science more generally, it is common to ascribe equal importance to the three components of the scientific trinity: theoretical, experimental, and computational studies. This review will explore the future of modern turbulence theory by tracing its history, which began in earnest with Kolmogorov’s 1941 analysis of turbulence cascade and inertial range [A.N. Kolmogorov, Dokl. Akad. Nauk SSSR, 30, 299, (1941); 32, 19, (1941)]. The 80th Anniversary of Kolmogorov’s landmark study is a welcome opportunity to survey the achievements and evaluate the future of the theoretical approach of turbulence research. Over the years, turbulence theories have been critically important in laying the foundation of our understanding of the nature of turbulent flows. In particular, the Direct Interaction Approximation (DIA) [R.H. Kraichnan, J. Fluid Mech., 5, 497 (1959)] and its subsequent development, known as the statistical closure approach, can be identified as perhaps the most profound single advancement. The remarkable success of the statistical closure has furnished a platform to study such essential concepts as the energy transfer process and interacting scales, and the roles of the straining and sweeping motions. More recently, the quasi-Lagrangian formulation of V. L’vov & I. Procaccia and Kraichnan’s solvable passive scalar model provided powerful ways to explore another fundamental aspect of turbulent flows, the phenomena of intermittency, and the associated anomalous scaling exponents. In the meantime, the theory of fluid equilibria has been developed to describe the large-scale structures that can emerge from turbulent cascades of two-dimensional and geophysical flows at a later time. And yet, despite all these successes, analytical treatments suffer from mathematical complexities. As a result, the utility of theoretical approaches has been limited to relatively idealized flows. On the other hand, in recent decades, computational abilities and experimental facilities have reached an unprecedented scale. Looking beyond the horizon, the imminent deployment of exascale supercomputers will generate complete datasets of the entire flow field of key benchmark flows, allowing researchers to extract additional measurements concerning fully developed, complex turbulent flow fields far beyond those available from the statistical closure theories. Some other developments that could potentially influence the future course of turbulence theories include the advancement of machine learning, artificial intelligence, and data science; likely disruptions arising from the advent of quantum computation; and the increasingly prominent role of turbulence research in providing more accurate climate scientific data. Turbulence theorists can leverage these developments by asking the right questions and developing advanced, sophisticated frameworks that will be able to predict and correlate vast amounts of data from the other two components of the trinity.

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
Full Text: DOI

References:

[1] Abrikosov, A. A.; Gorkov, L. P.; Dzyaloshinski, I. E., Methods of Quantum Field Theory in Statistical Physics (1963), Prentice-Hall, Englewood Cliffs: Prentice-Hall, Englewood Cliffs NJ · Zbl 0135.45003
[2] Adhikari, L.; Zank, G. P.; Zhao, L. L., A solar coronal hole and fast solar wind turbulence model and first-orbit Parker Solar Probe (PSP) observations, Astrophys. J., 901, 102 (2020)
[3] Adhikari, L.; Zank, G. P.; Zhao, L. L.; Telloni, D.; Horbury, T. S.; O’Brien, H.; Evans, V.; Angelini, V.; Owen, C. J.; Louarn, P.; Fedorov, A., Evolution of anisotropic turbulence in the fast and slow solar wind: Theory and solar orbiter measurements, Astron. Astrophys. (2021)
[4] Adzhemyan, L. Ts.; Antonov, N. V., Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow, Phys. Rev. E, 58, 7381 (1998)
[5] Adzhemyan, L. Ts.; Antonov, N. V.; Barinov, V. A.; Kabrits, Yu. S.; Vasil’ev, A. N., Anomalous exponents to order \(\varepsilon^3\) in the rapid-change model of passive scalar advection, Phys. Rev. E. Phys. Rev. E, Phys. Rev. E, 64, 019901 (2001), (Erratum)
[6] Adzhemyan, L. Ts.; Antonov, N. V.; Barinov, V. A.; Kabrits, Yu. S.; Vasil’ev, A. N., Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order \(\varepsilon^3\), Phys. Rev. E, 64, Article 056306 pp. (2001)
[7] Adzhemyan, L. Ts.; Antonov, N. V.; Honkonen, J., Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation, Phys. Rev. E, 66, Article 036313 pp. (2002)
[8] Adzhemyan, L. Ts.; Antonov, N. V.; Honkonen, J.; Kim, T. L., Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: Two-loop approximation, Phys. Rev. E, 71, Article 016303 pp. (2005)
[9] Adzhemyan, L. Ts.; Antonov, N. V.; Vasil’ev, A. N., Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar, Phys. Rev. E, 58, 1823 (1998)
[10] Adzhemyan, L. Ts.; Antonov, N. V.; Vasil’ev, A. N., Renormalization group, operator expansion, and anomalous scaling in a simple model of turbulent diffusion, Theoret. Math. Phys., 120, 1074 (1999) · Zbl 0966.76033
[11] Agullo, O.; Muller̈, W. C.; Knaepen, B.; Carati, D., Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling, Phys. Plasmas, 8, 3502 (2001)
[12] Akiyama, S.; Wheeler, J. C.; Meier, D. L.; Lichtenstadt, I., The magnetorotational instability in core-collapse supernova explosions, Astrophys. J., 584, 954 (2003)
[13] Alards, K. M.; Rajaei, H.; Kunnen, R. P.; Toschi, F.; Clercx, H. J., Directional change of tracer trajectories in rotating Rayleigh-Beńard convection, Phys. Rev. E, 97, Article 063105 pp. (2018)
[14] Alemany, A.; Moreau, R.; Sulem, P. L.; Frisch, U., Influence of an external magnetic field on homogeneous MHD turbulence, J. Méc., 18, 277 (1979)
[15] Alexakis, A.; Biferale, L., Cascades and transitions in turbulent flows, Phys. Rep., 767-769, 1 (2018)
[16] Alexakis, A.; Mininni, P. D.; Pouquet, A., Imprint of large-scale flows on turbulence, Phys. Rev. Lett., 95, Article 264503 pp. (2005)
[17] Alexakis, A.; Mininni, P. D.; Pouquet, A., Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence, Phys. Rev. E, 72, Article 046301 pp. (2005)
[18] Allport, A., Britain at Bay: The Epic Story of the Second World War, 1938-1941 (2020), Profile Books: Profile Books London
[19] Aluie, H., Coarse-grained incompressible magnetohydrodynamics: Analyzing the turbulent cascades, New J. Phys., 19, Article 025008 pp. (2017) · Zbl 1512.76131
[20] Aluie, H.; Eyink, G. L., Localness of energy cascade in hydrodynamic turbulence. II. Sharp-spectral filter, Phys. Fluids, 21, Article 115108 pp. (2009) · Zbl 1183.76072
[21] Aluie, H.; Eyink, G. L., Scale locality of magnetohydrodynamic turbulence, Phys. Rev. Lett., 104, Article 081101 pp. (2010)
[22] Aluie, H.; Hecht, M.; Vallis, G. K., Mapping the energy cascade in the North Atlantic Ocean: The coarse-graining approach, J. Phys. Oceanogr., 48, 225 (2018)
[23] Aluie, H.; Kurien, S., Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows, Europhys. Lett., 96, 44006 (2011)
[24] Anderson, Jr., J. D., Fundamentals of Aerodynamics (1984), McGraw-Hill: McGraw-Hill N.Y.
[25] André, J. C.; Lesieur, M., Influence of helicity on the evolution of isotropic turbulence at high Reynolds number, J. Fluid Mech., 81, 187 (1977) · Zbl 0369.76054
[26] Antonelli, M.; Afonso, M. M.; Mazzino, A.; Rizza, U., Structure of temperature fluctuations in turbulent convective boundary layers, J. Turbl., 16, N35 (2006)
[27] Antonov, N. V., Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection, J. Phys. A, 39, 7825 (2006) · Zbl 1117.76030
[28] Antonov, N. V.; Gulitskiy, N. M., Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev-Kraichnan kinematic model, Phys. Rev. E, 85, 065301(R) (2012)
[29] Antonov, N. V.; Gulitskiy, N. M., Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling, Phys. Rev. E, 92, Article 043018 pp. (2015)
[30] Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Lučivjanský, T., Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields, Phys. Rev. E, 95, Article 033120 pp. (2017)
[31] Antonov, N. V.; Gulitskiy, N. M.; Kostenko, M. M.; Malyshev, A. V., Statistical symmetry restoration in fully developed turbulence: Renormalization group analysis of two models, Phys. Rev. E, 97, Article 033101 pp. (2018)
[32] Antonov, N. V.; Honkonen, J., Anomalous scaling in two models of passive scalar advection: Effects of anisotropy and compressibility, Phys. Rev. E, 63, Article 036302 pp. (2001)
[33] Arad, I.; Biferale, L.; Celani, A.; Procaccia, I.; Vergassola, M., Statistical conservation laws in turbulent transport, Phys. Rev. Lett., 81, 5330 (2001)
[34] Arad, I.; Biferale, L.; Procaccia, I., Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields, Phys. Rev. E, 61, 2654 (2000)
[35] Arad, I.; Dhruva, B.; Kurien, S.; L’vov, V. S.; Procaccia, I.; Sreenivasan, K. R., Extraction of anisotropic contributions in turbulent flows, Phys. Rev. Lett., 81, 5330 (1998)
[36] Arad, I.; L’vov, V. S.; Procaccia, I., Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group, Phys. Rev. E, 59, 6753 (1999)
[37] Aragón, J. L.; Naumis, G. G.; Bai, M.; Torres, M.; Maini, P. K., Turbulent luminance in impassioned van Gogh paintings, J. Math. Imaging Vis., 30, 275 (2008)
[38] Ariki, T.; Yoshida, K., Hessian-based Lagrangian closure theory for passive scalar turbulence, Phys. Rev. Fluids (2021), (in press). ArXiv preprint arXiv:1909.05482
[39] Ariki, T.; Yoshida, K.; Matsuda, K.; Yoshimatsu, K., Scale-similar clustering of heavy particles in the inertial range of turbulence, Phys. Rev. E, 97, Article 033109 pp. (2018)
[40] Arponen, H., Anomalous scaling and anisotropy in models of passively advected vector fields, Phys. Rev. E, 79, Article 056303 pp. (2009)
[41] Arute, F., Quantum supremacy using a programmable superconducting processor, Nature, 574, 505 (2019)
[42] Ashurst, W. T.; Kerstein, A. R.; Kerr, R. M.; Gibson, C. H., Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids, 30, 2343 (1987)
[43] Aslangil, D.; Livescu, D.; Banerjee, A., Variable-density buoyancy-driven turbulence with asymmetric initial density distribution, Physica D, 406, Article 132444 pp. (2020)
[44] Attili, A.; Bisetti, F., Fluctuations of a passive scalar in a turbulent mixing layer, Phys. Rev. E, 88, Article 033013 pp. (2013)
[45] Augier, P.; Galtier, S.; Billant, P., Kolmogorov laws for stratified turbulence, J. Fluid Mech., 709, 659 (2012) · Zbl 1275.76145
[46] Augustson, K. C.; Mathis, S., A model of rotating convection in stellar and planetary interiors. I. Convective penetration, Astrophys. J., 874, 83 (2019)
[47] Aulery, F.; Dupuy, D.; Toutant, A.; Bataille, F.; Zhou, Y., Spectral analysis of turbulence in anisothermal channel flows, Comput. Fluids, 151, 115 (2017) · Zbl 1390.76091
[48] Avellaneda, M.; Majda, A. J., Mathematical models with exact renormalization for turbulent transport, Commun. Math. Phys., 131, 381 (1990) · Zbl 0703.76042
[49] Bachman, S. D.; Fox-Kemper, B.; Pearson, B., A scale-aware subgrid model for quasi-geostrophic turbulence, J. Geophys. Res. Oceans, 122, 1529 (2017)
[50] Baerenzung, J.; Politano, H.; Ponty, Y.; Pouquet, A., Spectral modeling of turbulent flows and the role of helicity, Phys. Rev. E, 77, Article 046303 pp. (2008)
[51] Baerenzung, J.; Politano, H.; Ponty, Y.; Pouquet, A., Spectral modeling of magnetohydrodynamic turbulent flows, Phys. Rev. E, 78, Article 026310 pp. (2008)
[52] Bailey, M., Starry Night: Van Gogh At the Asylum (2018), White Lion Publishing: White Lion Publishing London, U.K
[53] Balescu, R., Equilibrium and Nonequilibrium Statistical Mechanics (1975), John Wiley & Sons: John Wiley & Sons New York · Zbl 0984.82500
[54] Balk, A. M.; van Heerden, F.; Weichman, P. B., Rotating shallow water dynamics: Extra invariant and the formation of zonal jets, Phys. Rev. E, 83, Article 046320 pp. (2011)
[55] Balkovsky, E.; Falkovich, V., Two complementary descriptions of intermittency, Phys. Rev. E, 57, R1231 (1998)
[56] Balkovsky, E.; Falkovich, G.; Kolokolov, I.; Lebedev, V., Intermittency of Burgers’ turbulence, Phys. Rev. Lett., 78, 1452 (1997) · Zbl 1229.76084
[57] Balkovsky, E.; Lebedev, V., Instanton for the Kraichnan passive scalar problem, Phys. Rev. E, 58, 5776 (1998)
[58] Bandyopadhyay, R.; Oughton, S.; Wan, M.; Matthaeus, W. H.; Chhiber, R.; Parashar, T. N., Finite dissipation in anisotropic magnetohydrodynamic turbulence, Phys. Rev. X, 8, Article 041052 pp. (2018)
[59] Barenblatt, G. I., George Keith Batchelor (1920-2000) and David George Crighton (1942-2000): Applied mathematicians, Not. Am. Math. Soc., 48, 800 (2001) · Zbl 0978.01049
[60] Barenghi, C. F.; L’vov, V.; Roche, P. E., Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid, Proc. Natl. Acad. Sci., 111, Suppl. 1, 4683 (2014) · Zbl 1355.76083
[61] Barker, A. J., On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets, Mon. Not. R. Astron. Soc., 460, 2339 (2016)
[62] Barmparousis, C.; Drikakis, D., Theory of two-point correlation function in a Vlasov plasma, Internat. J. Numer. Methods Fluids, 85, 385 (2017)
[63] Barness, A. S., An assessment of the rotation rates of the host stars of extrasolar planets, Astrophys. J., 561, 1095 (2001)
[64] Baroud, C. N.; Plapp, B. B.; She, Z. S.; Swinney, H. L., Anomalous self-similarity in a turbulent rapidly rotating fluid, Phys. Rev. Lett., 88, Article 114501 pp. (2002)
[65] Bassenne, M.; Bae, H. J.; Lozano-Durán, A., Mandala-inspired representation of the turbulent energy cascade, Phys. Rev. Fluids, 3, Article 100505 pp. (2018)
[66] Bataille, F.; Zhou, Y., Nature of the energy transfer process in compressible turbulence, Phys. Rev. E, 59, 5417 (1999)
[67] Batchelor, G. K., Pressure fluctuations in isotropic turbulence, Proc. Cam. Phil. Soc., 47, 357 (1951) · Zbl 0042.19403
[68] Batchelor, G. K., The Theory of Homogeneous Turbulence (1953), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K. · Zbl 0053.14404
[69] Batchelor, G. K., Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity, J. Fluid Mech., 5, 113 (1959) · Zbl 0085.39701
[70] Batchelor, G. K., An Introduction to Fluid Dynamics (1967), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K. · Zbl 0152.44402
[71] Batchelor, G. K., Computation of the energy spectrum in homogeneous two-dimensional turbulence, Phys. Fluids, Suppl II, 12, 233 (1969) · Zbl 0217.25801
[72] Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R., Homogeneous buoyancy-generated turbulence, J. Fluid Mech., 235, 349 (1990) · Zbl 0743.76040
[73] Batchelor, G. K.; Howells, I. D.; Townsend, A. A., Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity, J. Fluid Mech., 5, 134 (1959) · Zbl 0085.39702
[74] Batchelor, G. K.; Proudman, I., The large-scale structure of homogeneous turbulence, Philos. Trans. R. Soc. Lond. Ser. A, 248, 369 (1956) · Zbl 0074.42501
[75] Batchelor, G. K.; Townsend, A. A., The nature of turbulent motion at large wave-numbers, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 199, 238 (1949) · Zbl 0036.25602
[76] Bateman, G., MHD Instabilities (1978), MIT Press: MIT Press Cambridge, MA
[77] Battimelli, G., On the history of the statistical theories of turbulence, Rev. Mex. Fis., 32, Suppl. 1, S3 (1986) · Zbl 1291.76005
[78] Beck, A.; Flad, D.; Munz, C. D., Deep neural networks for data-driven LES closure models, J. Comput. Phys., 398, Article 108910 pp. (2019)
[79] Beck, A.; Kurz, M., A perspective on machine learning methods in turbulence modeling, GAMM-Mitt., 44, Article e202100002 pp. (2021) · Zbl 1529.76072
[80] Belcher, J. W.; Davis, L., Large-amplitude Alfvén waves in the interplanetary medium, 2, J. Geophys. Res., 76, 3534 (1971)
[81] Belinicher, V. I.; L’vov, V., A scale-invariant theory of developed hydrodynamic turbulence, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Sov. Phys.—JETP, 66, 303 (1987)
[82] Belinicher, V. I.; L’vov, V.; Pomyalov, A.; Procaccia, I., Computing the scaling exponents in fluid turbulence from first principles: Demonstration of multiscaling, J. Stat. Phys., 93, 797 (1998) · Zbl 0953.76036
[83] Belinicher, V. I.; L’vov, V.; Procaccia, I., A new approach to computing the scaling exponents in fluid turbulence from first principles, Physica A, 254, 215 (1998)
[84] Bellet, F.; Godeferd, F. S.; Scott, J. F.; Cambon, C., Wave-turbulence in rapidly rotating flows, J. Fluid Mech., 562, 83 (2006) · Zbl 1157.76338
[85] Belmont, G.; Grappin, R.; Mottez, F.; Pantellini, F.; Pelletier, G., Collisionless Plasmas in Astrophysics (2013), Wiley-VCH: Wiley-VCH Weinheim, Germany · Zbl 1320.82001
[86] Benioff, P., The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines, J. Stat. Phys., 22, 563 (1980) · Zbl 1382.68066
[87] Benney, D. J.; Newell, A. C., Random wave closure, Stud. Appl. Math., 48, 29 (1969) · Zbl 0185.55404
[88] Benzi, R., A short review on drag reduction by polymers in wall bounded turbulence, Physica D, 239, 1338 (2010) · Zbl 1193.37110
[89] Benzi, R.; Biferale, L.; Ruiz-Chavarria, G.; Ciliberto, S.; Toschi, F., Multiscale velocity correlation in turbulence: Experiments, numerical simulations, synthetic signals, Phys. Fluids, 11, 2215 (1999) · Zbl 1147.76322
[90] Benzi, R.; Biferale, L.; Toschi, F., Multiscale velocity correlations in turbulence, Phys. Rev. Lett., 80, 3244 (1998)
[91] Benzi, R.; Ching, E. S.C., Polymers in fluid flows, Annu. Rev. Condens. Matter Phys., 9, 163 (2018)
[92] Benzi, R.; Ciliberto, S.; Tripiccione, R.; Baudet, C.; Massaioli, F.; Succi, S., Extended self-similarity in turbulent flows, Phys. Rev. E, 48, R29 (1993)
[93] Benzi, R.; Collela, M.; Briscolini, M.; Santangelo, P., A simple point vortex model for two-dimensional decaying turbulence, Phys. Fluids A, 4, 1036 (1992) · Zbl 0775.76077
[94] Benzi, R.; Paladin, G.; Paternello, S.; Santangelo, P.; Vulpiani, A., Intermittency and coherent structures in two-dimensional turbulence, J. Phys. A, 19, 3771 (1986) · Zbl 0614.76061
[95] Benzi, R.; Paternello, S.; Santangelo, P., On the structural properties of two-dimensional decaying turbulence, Europhys. Lett., 3, 811 (1987)
[96] Benzi, R.; Paternello, S.; Santangelo, P., Self-similar coherent structures in two-dimensional decaying turbulence, J. Phys. A, 21, 1221 (1988)
[97] Berera, A.; Ho, R. D.J. G.; Clark, D., Homogeneous isotropic turbulence in four spatial dimensions, Phys. Fluids, 32, Article 085107 pp. (2020)
[98] Beresnyak, A., Spectra of strong magnetohydrodynamic turbulence from high-resolution simulations, Astrophys. J. Lett., 784, L20 (2014)
[99] Beresnyak, A., On the parallel spectrum in magnetohydrodynamic turbulence, Astrophys. J. Lett., 801, L9 (2015)
[100] Beresnyak, A.; Lazarian, A., Turbulence in Magnetohydrodynamics (2019), De Gruyter: De Gruyter Berlin · Zbl 1416.76002
[101] Bernard, D.; Gawedzki, K.; Kupiainen, A., Slow modes in passive advection, J. Stat. Phys., 90, 519 (1998) · Zbl 0932.76030
[102] Bernstein, W., Hitlerś Uranium Club: The Secret Recordings At Farm Hall (2013), Springer: Springer NY
[103] Bertoglio, J. P.; Bataille, F.; Marion, J. D., Two-point closures for weakly compressible turbulence, Phys. Fluids, 13, 290 (2001) · Zbl 1184.76054
[104] Besnard, D. C.; Harlow, F. H.; Rauenzahn, R. M.; Zemach, C., Spectral transport model for turbulence, Theor. Comput. Fluid Dyn., 8, 1 (1996) · Zbl 0865.76027
[105] Betchov, R., An inequality concerning the production of vorticity in isotropic turbulence, J. Fluid Mech., 1, 497 (1956) · Zbl 0071.40603
[106] Betchov, R., Introduction to the Kraichnan theory of turbulence, (Pai, S. I., Dynamics of Fluids and Plasma (1966), Academic Press: Academic Press New York)
[107] Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S., Quantum machine learning, Nature, 549, 195 (2017)
[108] Bian, X.; Aluie, H., Decoupled cascades of kinetic and magnetic energy in magnetohydrodynamic turbulence, Phys. Rev. Lett., 122, Article 135101 pp. (2019)
[109] Bian, X.; Shang, J. K.; Blackman, E. G.; Collins, G. W.; Aluie, H., Scaling of turbulent viscosity and resistivity: Extracting a scale-dependent turbulent magnetic Prandtl number, Astrophys. J. Lett., 917, L3 (2021)
[110] Biferale, L., Shell models of energy cascade in turbulence, Annu. Rev. Fluid Mech., 35, 441 (2003) · Zbl 1041.76037
[111] Biferale, L., A note on the fluctuation of dissipative scale in turbulence, Phys. Fluids, 20, Article 031703 pp. (2008) · Zbl 1182.76064
[112] Biferale, L.; Boffetta, G.; Celani, A.; Toschi, F., Multi-time, multi-scale correlation functions in turbulence and in turbulent models, Physica D, 127, 187 (1999) · Zbl 0943.76036
[113] Biferale, L.; Bonaccorso, F.; Mazzitelli, I. M.; van Hinsberg, M. A.T.; Lanotte, A. S.; Musacchio, S.; Perlekar, P.; Toschi, F., Coherent structures and extreme events in rotating multiphase turbulent flows, Phys. Rev. X, 6, Article 041036 pp. (2016)
[114] Biferale, L.; Calzavarini, E.; Toschi, F., Multi-time multi-scale correlation functions in hydrodynamic turbulence, Phys. Fluids, 23, Article 085107 pp. (2011)
[115] Biferale, L.; Khomenko, D.; L’vov, V.; Pomyalov, A.; Procaccia, I.; Sahoo, G., Superfluid helium in three-dimensional counterflow differs strongly from classical flows: Anisotropy on small scales, Phys. Rev. Lett., 122, Article 144501 pp. (2019)
[116] Biferale, L.; Procaccia, I., Anisotropy in turbulent flows and in turbulent transport, Phys. Rep., 414, 43 (2005)
[117] Biferale, L.; Toschi, F., Anisotropic homogeneous turbulence: Hierarchy and intermittency of scaling exponents in the anisotropic sectors, Phys. Rev. Lett., 86, 4831 (2001)
[118] Bigot, B.; Galtier, S.; Politano, H., Development of anisotropy in incompressible magnetohydrodynamic turbulence, Phys. Rev. E, 78, Article 066301 pp. (2008)
[119] Bin, Y.; Xiao, M.; Shi, Y.; Zhang, Y.; Chen, S., A new idea to predict reshocked richtmyer-meshkov mixing: Constrained large-eddy simulation, J. Fluid Mech., 918, R1 (2021) · Zbl 1492.76064
[120] Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena (1960), John Wiley & Sons: John Wiley & Sons NY
[121] Biskamp, D., Magnetohydrodynamic Turbulence (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 1145.76300
[122] Bodenschatz, E.; Eckert, M., Prandtl and the Goẗtingen school, (Davidson, P. A.; Kaneda, Y.; Moffatt, K.; Sreenivasan, K. R., A Voyage Through Turbulence (2011), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK) · Zbl 1303.01018
[123] Boffetta, G.; Celani, A.; Vergassola, M., Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior, Phys. Rev. E, 61, R29 (2000)
[124] Boffetta, G.; Cencini, M.; Falcioni, M.; Vulpiani, A., Predictability: A way to characterize complexity, Phys. Rep., 356, 367 (2002) · Zbl 0977.37005
[125] Boffetta, G.; Ecke, R. E., Two-dimensional turbulence, Annu. Rev. Fluid Mech., 44, 427 (2012) · Zbl 1350.76022
[126] Boffetta, G.; Musacchio, R. E., Predictability of the inverse energy cascade in 2D turbulence, Phys. Fluids, 13, 1060 (2001) · Zbl 1184.76063
[127] Boffetta, G.; Musacchio, R. E., Evidence for the double cascade scenario in two-dimensional turbulence, Phys. Rev. E, 82, Article 016307 pp. (2010)
[128] Boffetta, G.; Musacchio, R. E., Chaos and predictability of homogeneous-isotropic turbulence, Phys. Rev. Lett., 119, Article 054102 pp. (2017)
[129] Boldyrev, S.; Perez, J. C.; Wang, Y., Residual energy in weak and strong mhd turbulence numerical modeling of space plasma flows, (Pogorelov, N. V.; Font, J. A.; Audit, E.; Zank, G. P., ASTRONUM-2011 (2011)), ASP Conf. Series, vol. 459
[130] Bos, W. J.T.; Bertoglio, J.-P., Lagrangian Markovianized field approximation for turbulence, J. Turbul., 14, 99 (2013)
[131] Bos, W. J.T.; Chevillard, L.; Scott, J. F.; Rubinstein, R., Reynolds number effect on the velocity increment skewness in isotropic turbulence, Phys. Fluids, 24, Article 015108 pp. (2012)
[132] Bos, W. J.T.; Rubinstein, R., On the strength of the nonlinearity in isotropic turbulence, J. Fluid Mech., 733, 158 (2013) · Zbl 1294.76157
[133] Bos, W. J.T.; Rubinstein, R.; Fang, L., Reduction of mean-square advection in turbulent passive scalar mixing, Phys. Fluids, 24, Article 075104 pp. (2012)
[134] Bos, W. J.T.; Shao, L.; Bertoglio, J.-P., Spectral imbalance and the normalized dissipation rate of turbulence, Phys. Fluids, 19, Article 045101 pp. (2007) · Zbl 1146.76331
[135] Bos, W. J.T.; Touil, H.; Bertoglio, J.-P., Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient, Phys. Fluids, 17, Article 125108 pp. (2005) · Zbl 1188.76017
[136] Bouchet, F., Simpler variational problems for statistical equilibria of the 2d euler equation and other systems with long range interactions, Physica D, 237, 1976 (2008) · Zbl 1143.76385
[137] Bouchet, F.; Sommeria, J., Emergence of intense jets and Jupiter’s Great Red Spot as maximum-entropy structures, J. Fluid Mech., 464, 165 (2002) · Zbl 1029.76057
[138] Bouchet, F.; Venaille, A., Statistical mechanics of two-dimensional and geophysical flows, Phys. Rep., 515, 227 (2012)
[139] Bourouaine, S.; Perez, J. C., On the limitations of Taylor’s hypothesis in Parker Solar Probe’s measurements near the Alfvén critical point, Astrophys. J. Lett., 858, L20 (2018)
[140] Bourouaine, S.; Perez, J. C., On the interpretation of Parker Solar Probe Turbulent Signals, Astrophys. J. Lett., 879, L16 (2019)
[141] Bourouaine, S.; Perez, J. C., Interpreting solar wind turbulent spectra beyond Taylor’s hypothesis, Astrophys. J. Lett., 893, L32 (2020)
[142] Boutros-Ghali, T.; Dupree, T. H., Theory of two-point correlation function in a Vlasov plasma, Phys. Fluids, 24, 1839 (1981) · Zbl 0478.76132
[143] Bowman, J. C.; Krommes, J. A., The realizable Markovian closure and realizable test-field model. II. Application to anisotropic drift-wave dynamics, Phys. Plasmas, 4, 3895 (1997)
[144] Bowman, J. C.; Krommes, J. A.; Ottaviani, M., The realizable Markovian closure. I. General theory, with application to three-wave dynamics, Phys. Fluids B, 5, 3558 (1993)
[145] Bracco, A.; McWilliams, J. C., Reynolds-number dependency in homogeneous, stationary two-dimensional turbulence, J. Fluid Mech., 646, 517 (2010) · Zbl 1189.76248
[146] Bradshaw, P., Turbulence: The chief outstanding difficulty of our subject, Exp. Fluids, 16, 203 (1994)
[147] Bragg, A. D.; Kurien, S.; Clark, T. T., Model of non-stationary, inhomogeneous turbulence, Theor. Comput. Fluid Dyn., 31, 51 (2017)
[148] Brands, H.; Chavanis, P. H.; Pasmanter, R.; Sommeria, J., Maximum entropy versus minimum enstrophy vortices, Phys. Fluids, 11, 3465 (1999) · Zbl 1149.76325
[149] Branover, H.; Eidelman, E.; Moiseyev, S., Turbulence and Structures: Chaos, Fluctuations, and Helical Self-Organization in Nature and the Laboratory (1999), Academic Press: Academic Press San Diego
[150] Brenner, M. P.; Eldredge, J. D.; Freund, J. B., Perspective on machine learning for advancing fluid mechanics, Phys. Rev. Fluids, 4, Article 100501 pp. (2019)
[151] Bretherton, F. P.; Haidvogel, D. B., Two-dimensional turbulence above topography, J. Fluid Mech., 78, 129 (1976) · Zbl 0355.76037
[152] Briard, A.; Gomez, T., Prandtl number effects in decaying homogeneous isotropic turbulence with a mean scalar gradient, J. Turbul., 18, 418 (2017)
[153] Briard, A.; Gomez, T., The decay of isotropic magnetohydrodynamics turbulence and the effects of cross-helicity, J. Plasma Phys., 84, Article 905840110 pp. (2018)
[154] Briard, A.; Gomez, T.; Cambon, C., Spectral modelling for passive scalar dynamics in homogeneous anisotropic turbulence, J. Fluid Mech., 799, 159 (2016) · Zbl 1460.76373
[155] Briard, A.; Gomez, T.; Mons, V.; Sagaut, P., Decay and growth laws in homogeneous shear turbulence, J. Turbul., 17, 699 (2016)
[156] Briard, A.; Gomez, T.; Sagaut, P.; Memari, S., Passive scalar decay laws in isotropic turbulence: Prandtl number effects, J. Fluid Mech., 784, 274 (2015) · Zbl 1382.76100
[157] Briard, A.; Gréa, B. J.; Mons, V.; Cambon, C.; Gomez, T.; Sagaut, P., Advanced spectral anisotropic modelling for shear flows, J. Turbul., 19, 570 (2018)
[158] Briard, A.; Iyer, I.; Gomez, T., Anisotropic spectral modeling for unstably stratified homogeneous turbulence, Phys. Rev. Fluids, 2, Article 044604 pp. (2017)
[159] Brouwers, J. J.H., Eulerian short-time statistics of turbulent flow at large Reynolds number, Phys. Fluids, 16, 2300 (2004) · Zbl 1186.76080
[160] Browaeys, A.; Lahaye, T., Many-body physics with individually controlled rydberg atoms, Nat. Phys., 16, 132 (2020)
[161] Brown, M. R.; Schaffner, D. A.; Weck, P. J., Magnetohydrodynamic turbulence: Observation and experiment, Phys. Plasmas, 22, Article 055601 pp. (2015)
[162] Bruneau, C. H.; Kellay, H., Experiments and direct numerical simulations of two-dimensional turbulence, Phys. Rev. E, 71, Article 046305 pp. (2005)
[163] Brunton, T.; Noack, T.; Koumoutsakos, Y., Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 52, 477 (2020) · Zbl 1439.76138
[164] Buaria, D.; Bodenschatz, E.; Pumir, A., Vortex stretching and enstrophy production in high Reynolds number turbulence, Phys. Rev. Fluids, 5, Article 104602 pp. (2020)
[165] Buaria, D.; Pumir, A.; Bodenschatz, E.; Yeung, P. K., Extreme velocity gradients in turbulent flows, New J. Phys., 21, Article 043004 pp. (2019)
[166] Buaria, D.; Sreenivasan, K. R., Dissipation range of the energy spectrum in high Reynolds number turbulence, Phys. Rev. Fluids, 5, Article 092601 pp. (2020)
[167] Burattini, P.; Lavoie, P.; Antonia, R. A., On the normalized turbulent energy dissipation rate, Phys. Fluids, 17, Article 098103 pp. (2005) · Zbl 1187.76077
[168] Burgers, J. M., On the application of statistical mechanics to the theory of turbulent fluid motion, Proc. Roy. Neth. Acad. Soc., 32, 643 (1929) · JFM 55.1130.03
[169] Burgers, J. M., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171 (1948)
[170] Burgers, J. M., Correlation problems in a one-dimensional model of turbulence I-IV, Proc. Acad. Sci. Amsterdam, 53, 247 (1950) · Zbl 0040.40504
[171] Burgess, B. H.; Dritschel, D. G.; Scott, R. K., Extended scale invariance in the vortices of freely evolving two-dimensional turbulence, Phys. Rev. Fluids, 2, Article 114702 pp. (2017)
[172] Burlot, A.; Gréa, B.-J.; Godeferd, F. S.; Cambon, C.; Griffond, J., Spectral modelling of high Reynolds number unstably stratified homogeneous turbulence, J. Fluid Mech., 765, 17 (2015) · Zbl 1328.76034
[173] Burlot, A.; Gréa, B.-J.; Godeferd, F. S.; Cambon, C.; Soulard, O., Large Reynolds number self-similar states of unstably stratified homogeneous turbulence, Phys. Fluids, 27, Article 065114 pp. (2015)
[174] Busecke, J. J.M.; Abernathey, R. P., Ocean mesoscale mixing linked to climate variability, Sci. Adv., 5, Article eaav5014 pp. (2019)
[175] Busse, F. H., Convection driven zonal flows and vortices in the major planets, Chaos, 4, 123 (1994)
[176] Buzzicotti, M.; Linkmann, M.; Aluie, H.; Biferale, L.; Brasseur, J.; Meneveau, C., Effect of filter type on the statistics of energy transfer between resolved and subfilter scales from a-priori analysis of direct numerical simulations of isotropic turbulence, J. Turbul., 19, 167 (2018)
[177] Buzzicotti, M.; Storer, B. A.; Griffies, S. M.; Aluie, H., A coarse-grained decomposition of surface geostrophic kinetic energy in the global ocean, Earth Space Sc. Open Archive (2021)
[178] Byers, C.; Hultmark, M.; George, W. K., Two-space, two-time similarity solution for decaying homogeneous turbulence, Phys. Fluids, 29, Article 020710 pp. (2017)
[179] Cabot, W.; Hubickyj, O.; Pollack, J. B.; Cassen, P.; Canuto, W. M., Direct numerical simulations of turbulent convection: I. Variable gravity and uniform rotation, Geophys. Astrophys. Fluid Dyn., 53, 1 (1990)
[180] Cabot, W. H.; Schilling, O.; Zhou, Y., Influence of subgrid scales on resolvable turbulence and mixing in Rayleigh-Taylor flow, Phys. Fluids, 16, 495 (2004) · Zbl 1186.76086
[181] Cambon, C.; Jacquin, L., Spectral approach to non-isotropic turbulence subjected to rotation, J. Fluid Mech., 202, 295 (1989) · Zbl 0667.76084
[182] Cambon, C.; Mansour, N.; Godeferd, F. S., Energy transfer in rotating turbulence, J. Fluid Mech., 337, 303 (1997) · Zbl 0891.76044
[183] Cambon, C.; Mons, V.; Gréa, B. J.; Rubinstein, R., Anisotropic triadic closures for shear-driven and buoyancy-driven turbulent flows, Comput. & Fluids, 151, 73 (2017) · Zbl 1390.76111
[184] Cambon, C.; Rubinstein, R.; Godeferd, F. S., Advances in wave turbulence: Rapidly rotating flows, New J. Phys., 6, 73 (2004)
[185] Cambon, C.; Scott, J. F., Linear and nonlinear models of anisotropic turbulence, Annu. Rev. Fluid Mech., 31, 1 (1999)
[186] Canet, L.; Chaté, H.; Delamotte, B.; Wschebor, N., Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation, Phys. Rev. Lett., 104, Article 150601 pp. (2010)
[187] Canet, L.; Chaté, H.; Delamotte, B.; Wschebor, N., Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: General framework and first applications, Phys. Rev. E, 104, Article 150601 pp. (2011)
[188] Canet, L.; Delamotte, B.; Wschebor, N., Fully developed isotropic turbulence: Symmetries and exact identities, Phys. Rev. E, 91, Article 053004 pp. (2015)
[189] Canet, L.; Delamotte, B.; Wschebor, N., Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed point solution, Phys. Rev. E, 93, Article 063101 pp. (2016)
[190] Canet, L.; Rossetto, V.; Wschebor, N.; Balarac, G., Spatiotemporal velocity-velocity correlation function in fully developed turbulence, Phys. Rev. E, 95, Article 023107 pp. (2017)
[191] Canuto, V. M.; Cheng, Y.; Hartke, G. J.; Schilling, O., Source function approach to turbulence bulk properties, Phys. Fluids A, 3, 1633 (1991)
[192] Cao, N.; Chen, S.; She, Z.-S., Scalings and relative scalings in the Navier-Stokes turbulence, Phys. Rev. Lett., 76, 3711 (1996)
[193] Carati, D.; Debliquy, O.; Knaepen, B.; Teaca, B.; Verma, M., Energy transfers in forced MHD turbulence, J. Turbul., 7, N51 (2006) · Zbl 1273.76434
[194] Carbone, F.; Sorriso-Valvo, L.; Versace, C.; Strangi, G.; Bartolino, R., Anisotropy of spatiotemporal decorrelation in electrohydrodynamic turbulence, Phys. Rev. Lett., 106, Article 114502 pp. (2011)
[195] Cardesa, J. I.; Vela-Martín, A.; Dong, S.; Jiménez, J., The temporal evolution of the energy flux across scales in homogeneous turbulence, Phys. Fluids, 27, Article 111702 pp. (2015)
[196] Cardesa, J. I.; Vela-Martín, A.; Jiménez, J., The turbulent cascade in five dimensions, Science, 357, 782 (2017) · Zbl 1404.76104
[197] Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L., Machine learning and the physical sciences, Rev. Modern Phys., 91, Article 045002 pp. (2019)
[198] Carnevale, G. F.; Frederiksen, J. S., Viscosity renormalization based on direct-interaction closure, J. Fluid Mech., 131, 289 (1983) · Zbl 0537.76025
[199] Carnevale, G. F.; Frederiksen, J. S., A statistical dynamical theory of strongly nonlinear internal gravity waves, Geophys. Astrophys. Fluid Dyn., 23, 175 (1983) · Zbl 0516.76017
[200] Carnevale, G. F.; Frederiksen, J. S., Nonlinear stability and statistical mechanics of flow over topography, J. Fluid Mech., 175, 157 (1987) · Zbl 0651.76020
[201] Carnevale, G. F.; Frisch, U.; Salmon, R., H theorems in statistical fluid dynamics, J. Phys. A, 14, 1701 (1981) · Zbl 0476.76001
[202] Carnevale, G. F.; Martin, P. C., Field theoretic techniques in statistical fluid dynamics: With application to nonlinear wave dynamics, Geophys. Astrophys. Fluid Dyn., 20, 131 (1982) · Zbl 0491.76056
[203] Carnevale, G. F.; McWilliams, J. C.; Pomeau, Y.; Weiss, G. B.; Young, W. R., Evolution of vortex statistics in two dimensional turbulence, Phys. Rev. Lett., 66, 2735 (1991)
[204] Carnevale, G. F.; Purini, R.; Cavazza, P., Barotropic quasi-geostrophic f-plane flow over anisotropic topography, J. Fluid Mech., 285, 329 (1995) · Zbl 0852.76015
[205] Carter, D. W.; Coletti, F., Scale-to-scale anisotropy in homogeneous turbulence, J. Fluid Mech., 827, 250 (2017) · Zbl 1460.76349
[206] Carter, D. W.; Coletti, F., Small-scale structure and energy transfer in homogeneous turbulence, J. Fluid Mech., 854, 505 (2018) · Zbl 1415.76253
[207] Carter, D.; Petersen, A.; Amili, O.; Coletti, F., Generating and controlling homogeneous air turbulence using random jet arrays, Exp. Fluids, 57, 189 (2016)
[208] Cassini, C. F., Some observations concerning Jupiter. Of the shadow of one of his satellites seen, by a telescope passing over the body of Jupiter; And of a permanent spot in Jupiter: By which is manifested the conversion of Jupiter about his own axis, Philos. Trans. R. Soc. Lond., 1, 143 (1667)
[209] Castelvecchi, D., On the trail of turbulence, Nature, 548, 382 (2017)
[210] Castelvecchi, D., How ‘spooky’ is quantum physics? The answer could be incalculable, Nature, 577, 461 (2020)
[211] Celani, A.; Biskamp, D., Bridge relations in Navier-Stokes turbulence, Europhys. Lett., 46, 332 (1999)
[212] Celani, A.; Cencini, M.; Vergassola, M.; Villermaux, E.; Vincenzi, D., Shear effects on passive scalar spectra, J. Fluid Mech., 523, 99 (2005) · Zbl 1065.76111
[213] Celani, A.; Lanotte, A.; Vergassola, M., Universality and saturation of intermittency in passive scalar turbulence, Phys. Rev. Lett., 84, 2385 (2000)
[214] Celani, A.; Lanotte, A.; Vergassola, M., Fronts in passive scalar turbulence, Phys. Fluids, 13, 1768 (2001) · Zbl 1184.76088
[215] Celani, A.; Mazzino, A.; Vergassola, M., Thermal plume turbulence, Phys. Fluids, 13, 2133 (2001) · Zbl 1184.76089
[216] Celani, A.; Seminara, A., Large-scale structure of passive scalar turbulence, Phys. Rev. Lett., 94, Article 214503 pp. (2005)
[217] Celani, A.; Seminara, A., Large-scale anisotropy in scalar turbulence, Phys. Rev. Lett., 96, Article 184501 pp. (2006)
[218] Celani, A.; Vergassola, M., Statistical geometry in scalar turbulence, Phys. Rev. Lett., 86, Article 424 pp. (2001)
[219] Chakraborty, S.; Bhattacharjee, J. K., Third-order structure function for rotating three-dimensional homogeneous turbulent flow, Phys. Rev. E, 76, Article 036304 pp. (2007)
[220] Champagne, F. H.; Friehe, C. A.; LaRue, J. C.; Wynagaard, J. C., Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land, J. Atmos. Sci., 34, 515 (1977)
[221] Champagne, F. H.; Harris, V. G.; Corrsin, S., Experiments on nearly homogeneous turbulent shear flow, J. Fluid Mech., 41, 81 (1970)
[222] Chan, W. H.R.; Johnson, P. L.; Moin, P., The turbulent bubble break-up cascade. Part 1. Theoretical developments, J. Fluid Mech., 912, A42 (2021) · Zbl 1461.76180
[223] Chandrasekhar, S., The fluctuations of density in isotropic turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 210, 18 (1951) · Zbl 0044.21203
[224] Chandrasekhar, S., A theory of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 229, 1 (1955) · Zbl 0064.43702
[225] Chandrasekhar, S., Hydromagnetic turbulence. I. A deductive theory, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 233, 322 (1955)
[226] Chandrasekhar, S., Theory of turbulence, Phys. Rev., 102, 941 (1956) · Zbl 0070.43001
[227] Chang, K.; Bewley, G. P.; Bodenschatz, E., Experimental study of the influence of anisotropy on the inertial scales of turbulence, J. Fluid Mech., 692, 464 (2012) · Zbl 1250.76005
[228] Chapman, D. R., Computational aerodynamics development and outlook, AIAA J., 17, 1293 (1979) · Zbl 0443.76060
[229] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1970), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K. · Zbl 0098.39702
[230] Charney, J. G., Geostrophic turbulence, J. Atmos. Sci., 28, 1087 (1971)
[231] Chasnov, J. R., Computation of the Loitsianski integral in decaying isotropic turbulence, Phys. Fluids A, 5, 2579 (1993) · Zbl 0790.76038
[232] Chasnov, J.; Canuto, V. M.; Rogallo, R. S., Turbulence spectrum of a passive temperature field: Results of a numerical simulation, Phys. Fluids, 31, 2065 (1988)
[233] Chassaing, P.; Antonia, R. A.; Anselmet, F.; Joly, L.; Sarkar, S., Variable Density Fluid Turbulence (2002), Kluwer: Kluwer Dordrecht, The Netherlands · Zbl 1137.76024
[234] Chavanis, P.-H., Quasilinear theory of the 2D Euler equation, Phys. Rev. Lett., 84, 5512 (2000)
[235] Chavanis, P.-H., Kinetic theory of point vortices: Diffusion coefficient and systematic drift, Phys. Rev. E, 64, Article 026309 pp. (2001)
[236] Chavanis, P.-H., Statistical mechanics of two-dimensional vortices and stellar systems, (Dauxois, T.; Ruffo, S.; Arimondo, E.; Wilkens, M., Dynamics and Thermodynamics of Systems with Long-Range Interactions. Dynamics and Thermodynamics of Systems with Long-Range Interactions, Lecture Notes in Physics, vol. 602 (2002), Springer: Springer Berlin)
[237] Chavanis, P.-H., Statistical mechanics of geophysical turbulence: Application to Jovian flows and Jupiter’s great red spot, Physica D, 200, 257 (2005) · Zbl 1290.76036
[238] Chavanis, P.-H., Statistical mechanics of 2D turbulence with a prior vorticity distribution, Physica D, 237, 1998 (2008) · Zbl 1143.76450
[239] Chavanis, P.-H., Dynamical and thermodynamical stability of two-dimensional flows: Variational principles and relaxation equations, Eur. Phys. J. B, 70, 73 (2009) · Zbl 1188.76209
[240] Chavanis, P.-H., Kinetic theory of Onsager’s vortices in two-dimensional hydrodynamics, Physica A, 391, 3657 (2012)
[241] Chavanis, P.-H., Statistical mechanics of two-dimensional point vortices: Relaxation equations and strong mixing limit, Eur. Phys. J. B, 87, 81 (2014)
[242] Chavanis, P.-H., A parametrization of two-dimensional turbulence based on a maximum entropy production principle with a local conservation of energy, Fluid Dyn. Res., 46, Article 061409 pp. (2014)
[243] Chavanis, P. H.; Naso, A.; Dubrulle, B., Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution, Eur. Phys. J. B, 77, 167 (2010)
[244] Chavanis, P.-H.; Sire, C., The statistics of velocity fluctuations arising from a random distribution of point vortices: The speed of fluctuations and the diffusion coefficient, Phys. Rev. E, 62, 490 (2000)
[245] Chavanis, P.-H.; Sommeria, J., Classification of self-organized vortices in two-dimensional turbulence: The case of a bounded domain, J. Fluid Mech., 314, 267 (1996) · Zbl 0864.76037
[246] Chavanis, P.-H.; Sommeria, J., Thermodynamical approach for small-scale parametrization in two-dimensional turbulence, Phys. Rev. Lett., 78, 3302 (1997)
[247] Chavanis, P.-H.; Sommeria, J., Classification of robust isolated vortices in two-dimensional hydrodynamics, J. Fluid Mech., 356, 259 (1998) · Zbl 0912.76011
[248] Chavanis, P.-H.; Sommeria, J., Statistical mechanics of the shallow water system, Phys. Rev. E, 65, Article 026302 pp. (2002)
[249] Chavanis, P. H.; Sommeria, J.; Robert, R., Statistical mechanics of two-dimensional vortices and collisionless stellar systems, Astrophys. J., 471, 385 (1996)
[250] Chaves, M.; Gawedzki, K.; Horvai, P.; Kupiainen, A.; Vergassola, M., Lagrangian dispersion in Gaussian self-similar velocity ensembles, J. Stat. Phys., 113, 643 (2003) · Zbl 1137.76388
[251] Che, H.; Zank, G. P.; Benz, A. O.; Tang, B.; Crawford, C., The formation of electron outflow jets with power-law energy distribution in guide-field magnetic reconnection, Astrophys. J., 908, 72 (2021)
[252] Cheikh, M. I.; Chen, J.; Wei, M., Small-scale energy cascade in homogeneous isotropic turbulence, Phys. Rev. Fluids, 4, Article 104610 pp. (2019)
[253] Chen, C. H.K.; Bale, S. D.; Salem, C. S.; Maruca, B. A., Residual energy spectrum of solar wind turbulence, Astrophys. J., 770, 125 (2013)
[254] Chen, C. H.K.; Mallet, A.; Yousef, T. A.; Schekochihin, A. A.; Horbury, T. S., Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations, Mon. Not. R. Astron. Soc., 415, 3219 (2011)
[255] Chen, H.; Chen, S.; Kraichnan, R. H., Probability distribution of a stochastically advected scalar field, Phys. Rev. Lett., 63, 2657 (1989)
[256] Chen, H.; Herring, J. R.; Kraichnan, R. H., Non-Gaussian statistics in isotropic turbulence, Phys. Fluids A, 1, 1844 (1989) · Zbl 0684.76050
[257] Chen, S.; Chen, Y.; Xia, Z.; Qu, K.; Shi, Y.; Xiao, Z.; Liu, Q.; Cai, Q.; Liu, F.; Lee, C.; Zhang, R., Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack, Sci. China Phys. Mech. Astron., 56, 270 (2013)
[258] Chen, S.; Dhruva, B.; Kurien, S.; Sreenivasan, K. R.; Taylor, M. A., Anomalous scaling of low-order structure functions of turbulent velocity, J. Fluid Mech., 533, 183 (2005) · Zbl 1074.76030
[259] Chen, S.; Doolen, G.; Herring, J. R.; Kraichnan, R. H.; Orszag, S. A.; She, Z. S., Far-dissipation range of turbulence, Phys. Rev. Lett., 70, 3051 (1993)
[260] Chen, S.; Kraichnan, R. H., Sweeping decorrelation in isotropic turbulence, Phys. Fluids A, 1, 2019 (1989)
[261] Chen, S.; Kraichnan, R. H., Inhibition of turbulent cascade by sweep, J. Plasma Phys., 57, 187 (1997)
[262] Chen, S.; Sreenivasan, K. R.; Nelkin, M.; Cao, N., Non-Gaussian statistics in isotropic turbulence, Phys. Rev. Lett., 79, 2253 (1997)
[263] Chen, S.; Xia, Z.; Pei, S.; Wang, J.; Yang, Y.; Xiao, Z.; Shi, Y., Reynolds-stress-constrained large-eddy simulation of wallbounded turbulent flows, J. Fluid Mech., 703, 1 (2012) · Zbl 1248.76093
[264] Chertkov, M.; Falkovich, G., Anomalous scaling exponents of a white-advected passive scalar, Phys. Rev. Lett., 76, 2706 (1996)
[265] Chertkov, M.; Falkovich, G.; Kolokolov, I.; Lebedev, V., Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalare, Phys. Rev. E, 52, 4924 (1995)
[266] Cheung, L. C.; Zaki, T. A., An exact representation of the nonlinear triad interaction terms in spectral space, J. Fluid Mech., 748, 175 (2014) · Zbl 1309.76101
[267] Chevillard, L.; Roux, S. G.; Lévêque, E.; Mordant, N.; Pinton, J. F.; Arnéodo, A., Intermittency of velocity time increments in turbulence, Phys. Rev. Lett., 95, Article 064501 pp. (2005)
[268] Chien, C.-C.; Blum, D. B.; Voth, G. A., Effects of fluctuating energy input on the small scales in turbulence, J. Fluid Mech., 737, 527 (2013) · Zbl 1294.76158
[269] Ching, E. S.C.; L’vov, V. S.; Procaccia, I., Fusion rules and conditional statistics in turbulent advection, Phys. Rev. E, 54, R4520 (1996)
[270] Cho, E. T.; Vishniac, A., The anisotropy of magnetohydrodynamic Alfvén turbulence, Astrophys. J., 539, 273 (2000)
[271] Cho, J.; Lazarian, A., The anisotropy of electron magnetohydrodynamic turbulence, Astrophys. J. Lett., 615, L41 (2004)
[272] Cho, J.; Lazarian, A., Simulations of electron magnetohydrodynamic turbulence, Astrophys. J., 701, 236 (2009)
[273] Cho, J. Y.-K.; Menou, K.; Seager, S., Atmospheric circulation of close-in extrasolar giant planets. I. Global, barotropic, adiabatic simulations, Astrophys. J., 675, 817 (2008)
[274] Cho, J. Y.N.; Newell, R. E.; Barrick, J. D., Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 2. Gravity waves, quasi-two-dimensional turbulence, and vortical modes, J. Geophys. Res. Atmos., 104, 16297 (1999)
[275] Cholemari, M.-R.; Jaywant, J. H., A model relating Eulerian spatial and temporal velocity correlations, J. Fluid Mech., 551, 19 (2006) · Zbl 1085.76024
[276] Chollet, J.-P.; Lesieur, M., Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38, 2747 (1981)
[277] Chollet, J.-P.; Métais, O., Predictability of three dimensional turbulence in large eddy simulations, European J. Mech. B Fluids, 8, 523 (1989) · Zbl 0687.76059
[278] Chou, P. Y., On an extension of Reynolds’ method of finding apparent stress and the nature of turbulence, Chin. J. Phys., 4, 1 (1940) · Zbl 0061.45301
[279] Chou, P. Y., On velocity correlations and the solutions of the equations of turbulent fluctuation, Quart. Appl. Math., 3, 38 (1945) · Zbl 0061.45302
[280] Clark, D., Intel’s Snag Stalls Drive By the U.S (2020), New York Times, Aug. 29, 2020, Section B, Page 1
[281] Clark, T. T.; Kurien, S.; Rubinstein, R., Generation of anisotropy in turbulent flows subjected to rapid distortion, Phys. Rev. E, 97, Article 013112 pp. (2018)
[282] Clark, T. T.; Zemach, C., A spectral model applied to homogeneous turbulence, Phys. Fluids, 7, 1674 (1995) · Zbl 1027.76577
[283] Clark, T. T.; Zemach, C., Symmetries and the approach to statistical equilibrium in isotropic turbulence, Phys. Fluids, 10, 2846 (1998) · Zbl 1185.76661
[284] Clark, T. T.; Zhou, Y.; Zemach, C., On fully self-preserving solutions in homogeneous turbulence, J. Turbul., 8, 1 (2007) · Zbl 1273.76119
[285] Cocke, W. J., Turbulent hydrodynamic line stretching: Consequences of isotropy, Phys. Fluids, 12, 2488 (1969) · Zbl 0195.27902
[286] Coleman, P. J., Wave-like phenomena in the interplanetary plasma: Mariner 2, Planet. Space Sci., 15, 953 (1967)
[287] Collinson, G.; Paterson, W. R.; Bard, C.; Dorelli, J.; Glocer, A.; Sarantos, M.; Wilson, R., New results from Galileo’s first flyby of Ganymede: Reconnection-driven flows at the low-latitude magnetopause boundary, crossing the cusp, and icy ionospheric escape, Geophys. Res. Lett., 45, 3382 (2018)
[288] Comte-Bellot, G.; Corrsin, S., The use of a contraction to improve the isotropy of grid-generated turbulence, J. Fluid Mech., 25, 657 (1966)
[289] Comte-Bellot, G.; Corrsin, S., Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence, J. Fluid Mech., 48, 273 (1971)
[290] Cook, A. W., Enthalpy diffusion in multicomponent flows, Phys. Fluids, 21, Article 055109 pp. (2009) · Zbl 1183.76157
[291] Cook, A. W.; Zhou, Y., Energy transfer in Rayleigh-Taylor instability, Phys. Rev. E, 66, Article 026312 pp. (2002)
[292] Corrsin, S., On the spectrum of isotropic temperature fluctuations in isotropic turbulence, J. Appl. Phys., 22, 469 (1951) · Zbl 0044.40601
[293] Corrsin, S., Heat transfer in isotropic turbulence, J. Appl. Phys., 23, 113 (1952) · Zbl 0046.42202
[294] Corrsin, S., Estimates of the relations between Eulerian and Lagrangian scales in large Reynolds number turbulence, J. Atmos. Sci., 20, 115 (1963)
[295] Cosentino, R. G.; Simon, A.; Morales-Juberías, R., Jupiter’s turbulent power spectra from hubble space telescope, J. Geophys. Res. Planets, 124, 1204 (2019)
[296] Craft, T.-J.; Launder, B. E.; Suga, K., Development and application of a cubic eddy-viscosity model of turbulence, Int. J. Heat Fluid Flow, 17, 108 (1996)
[297] Craya, A., Contribution à l’analyse de la turbulence associAÁ à des vitesses moyennes (1958), http://tel.archives-ouvertes.fr/tel-00684659
[298] Dallas, V.; Tobias, S. M., Forcing-dependent dynamics and emergence of helicity in rotating turbulence, J. Fluid Mech., 798, 682 (2016) · Zbl 1422.76198
[299] Dannevik, W. P., Efficient solution of non-Markovian covariance evolution equations in fluid turbulence, J. Sci. Comput., 1, 151 (1986) · Zbl 0648.76039
[300] Dannevik, W. P.; Yakhot, V.; Orszag, S. A., Analytical theories of turbulence and the \(\varepsilon\) expansion, Phys. Fluids, 30, 2021 (1987) · Zbl 0668.76059
[301] Darrigol, O., Between hydrodynamics and elasticity theory: The first five births of the Navier-Stokes equation, Arch. Hist. Exact Sci., 56, 95 (2002) · Zbl 0998.01014
[302] Das, S. P., Mode-coupling theory and the glass transition in supercooled liquids, Rev. Modern Phys., 76, 785 (2004)
[303] David, M.; Toutant, A.; Bataille, F., Investigation of thermal large-eddy simulation approaches in a highly turbulent channel flow submitted to strong asymmetric heating, Phys. Fluids, 33, Article 045104 pp. (2021)
[304] Davidson, P., An Introduction to Magnetohydrodynamics (2001), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 0974.76002
[305] Davidson, P., Turbulence: An Introduction for Scientists and Engineers (2004), Oxford University Press: Oxford University Press Oxford, UK · Zbl 1061.76001
[306] Davis, K. A.; Pawlak, G.; Monismith, S. G., Turbulence and coral reefs, Annu. Rev. Mar. Sci., 13, 343 (2021)
[307] Davoudi, J.; Reza Rahimi Tabar, M., Multiscale correlation functions in strong turbulence, Phys. Rev. E, 61, 6563 (2000)
[308] Debue, P.; Kuzzay, D.; Saw, E. W.; Daviaud, F.; Dubrulle, B.; Canet, L.; Rossetto, V.; Wschebor, N., Experimental test of the crossover between the inertial and the dissipative range in a turbulent swirling flow, Phys. Rev. Fluids, 3, Article 024602 pp. (2018)
[309] DeDominicis, C., Techniques de renormalisation de la theórie des champs et dynamique des phénomènes critiques, J. Phys. (Paris) Colloques, 37, C1-247 (1976)
[310] DeDominicis, C.; Martin, P. C., Energy spectra of certain randomly-stirred fluids, Phys. Rev. A, 19, 419 (1979)
[311] Deker, U.; Haake, F., Fluctuation-dissipation theorems for classical processes, Phys. Rev. A, 11, 2043 (1975)
[312] Delache, A.; Cambon, C.; Godeferd, F., Scale by scale anisotropy in freely decaying rotating turbulence, Phys. Fluids, 26, Article 025104 pp. (2014)
[313] Desnyansky, V. N.; Novikov, E. A., The evolution of turbulence spectra to the similarity regime, Izv. Akad. Nauk. SSSR Fiz. Atmos. Okeana, 10, 127 (1974)
[314] Dewan, C. A., Stratospheric wave spectra resembling turbulence, Science, 204, 832 (1979)
[315] Dhruva, B.; Tsuji, Y.; Sreenivasan, K. R., Transverse structure functions in high-reynolds-number turbulence, Phys. Rev. E, 56, R4928 (1997)
[316] Dűring, G.; Josserand, C.; Krstulovic, G.; Rica, S., Strong turbulence for vibrating plates: Emergence of a Kolmogorov spectrum, Phys. Rev. Fluids, 4, Article 064804 pp. (2019)
[317] Diamond, P. H.; Itoh, S. I.; Itoh, K.; Hahm, T. S., Zonal flows in plasma—A review, Plasma Phys. Control. Fusion, 47, R35 (2005)
[318] Dimotakis, P. E., Turbulent mixing, Annu. Rev. Fluid Mech., 37, 329 (2005) · Zbl 1117.76029
[319] Djenidi, L.; Lefeuvre, N.; Kamruzzaman, M.; Antonia, R. A., On the normalized dissipation parameter \(C_ɛ\) in decaying turbulence, J. Fluid Mech., 817, 61 (2017) · Zbl 1383.76180
[320] Doan, N. A.K.; Swaminathan, N.; Davidson, P. A.; Tanahashi, M., Scale locality of the energy cascade using real space quantities, Phys. Rev. Fluids, 3, Article 084601 pp. (2018)
[321] Dobrowolny, M.; Mangeney, A.; Veltri, P., Fully developed anisotropic hydromagnetic turbulence in interplanetary space, Phys. Rev. Lett., 45, 144 (1980)
[322] Domaradzki, J. A.; Adams, N. A., Direct modelling of subgrid scales of turbulence in large eddy simulations, J. Turbul., 3, 1 (2002)
[323] Domaradzki, J. A.; Carati, D., A comparison of spectral sharp and smooth filters in the analysis of nonlinear interactions and energy transfer in turbulence, Phys. Fluids, 19, Article 085111 pp. (2007) · Zbl 1182.76208
[324] Domaradzki, J. A.; Carati, D., An analysis of the energy transfer and the locality of nonlinear interactions in turbulence, Phys. Fluids, 19, Article 085112 pp. (2007) · Zbl 1182.76209
[325] Domaradzki, J. D.; Carati, D.; Teaca, B., Locality properties of the energy flux in magnetohydrodynamic turbulence, Phys. Fluids, 22, Article 051702 pp. (2010) · Zbl 1190.76032
[326] Domaradzki, J. A.; Metcalfe, R. W.; Rogallo, R. S.; Riley, J. J., Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations, Phys. Rev. Lett., 58, 547 (1987)
[327] Domaradzki, J. A.; Orszag, S. A., Numerical solutions of the direct interaction approximation equations for anisotropic turbulence, J. Sci. Comput., 3, 227 (1987) · Zbl 0666.76075
[328] Domaradzki, J. A.; Rogallo, R. S., Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence, Phys. Fluids A, 2, 413 (1990)
[329] Domaradzki, J. D.; Teaca, B.; Carati, D., Locality properties of the energy flux in turbulence, Phys. Fluids, 21, Article 025106 pp. (2009) · Zbl 1183.76185
[330] Donzis, D. A.; Sreenivasan, K. R., The bottleneck effect and the Kolmogorov constant in isotropic turbulence, J. Fluid Mech., 657, 171 (2010) · Zbl 1197.76057
[331] Dotti, M.; Schlander, R. K.; Buchhave, P.; Velte, C. M., Experimental investigation of the turbulent cascade development by injection of single large-scale fourier modes, Exp. Fluids, 61, 214 (2020)
[332] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge university press: Cambridge university press Cambridge, U.K · Zbl 0449.76027
[333] Dritschel, D. G.; Qi, W.; Marston, J. B., On the late-time behaviour of a bounded, inviscid two-dimensional flow. J. Fluid Mech., 783, 1 (2015) · Zbl 1382.76119
[334] Drivas, T. D.; Eyink, G. L., Lagrangian fluctuation-dissipation relation for scalar turbulence. Part I. Flows with no bounding walls, J. Fluid Mech., 829, 153 (2017) · Zbl 1460.76003
[335] Drivas, T. D.; Eyink, G. L., Lagrangian fluctuation-dissipation relation for scalar turbulence. Part II. Wall-bounded flows, J. Fluid Mech., 829, 236 (2017) · Zbl 1460.76004
[336] Drivas, T. D.; Johnson, P. L.; Lalescu, C. C.; Wilczek, M., Large-scale sweeping of small-scale eddies in turbulence: A filtering approach, Phys. Rev. Fluids, 2, Article 104603 pp. (2017)
[337] Dubois, D. F.; Espedal, M., Direct interaction approximation and plasma turbulence theory, Plasma Phys., 20, 1209 (1978)
[338] Dubois, T.; Jauberteau, F.; Zhou, Y., Influences of subgrid scale dynamics on resolvable scale statistics in large-eddy simulations, Physica D, 100, 390 (1997) · Zbl 0903.76068
[339] Dubois, D. F.; Pesme, D., Direct interaction approximation for Vlasov turbulence from the Kadomtsev weak coupling approximation, Phys. Fluids, 28, 1305 (1985) · Zbl 0612.76071
[340] Dubois, D. F.; Rose, H. A., Statistical theories of Langmuir turbulence. I. Direct-interaction-approximation responses, Phys. Rev. A, 24, 1476 (1981)
[341] Dumitrescu, H.; Vladimir, C., Rotational effects on the boundary-layer flow in wind turbines, AIAA J., 42, 408 (2004)
[342] Dupuis, N.; Canet, L.; Eichhorn, A.; Metzner, W.; Pawlowski, J. M.; Tissier, M.; Wschebor, N., The nonperturbative functional renormalization group and its applications, Phys. Rep., 910, 1 (2021) · Zbl 1476.81084
[343] Dupuy, D.; Toutant, A.; Bataille, F., A posteriori tests of subgrid-scale models in an isothermal turbulent channel flow, Phys. Fluids, 31, Article 045105 pp. (2019)
[344] Dupuy, D.; Toutant, A.; Bataille, F., A posteriori tests of subgrid-scale models in strongly anisothermal turbulent flows, Phys. Fluids, 31, Article 065113 pp. (2019)
[345] Duraisamy, K., Perspectives on machine learning-augmented Reynolds-averaged and large eddy simulation models of turbulence, Phys. Rev. Fluids, 6, Article 050504 pp. (2021)
[346] Duraisamy, K.; Iaccarino, G.; Xiao, H., Turbulence modeling in the age of data, Annu. Rev. Fluid Mech., 51, 357 (2019) · Zbl 1412.76040
[347] Durran, D. R.; Gingrich, M., Atmospheric predictability: Why butterflies are not of practical importance, J. Atmos. Sci., 71, 2476 (2014)
[348] Dutton, J. A.; Deaven, D. G., Some properties of atmospheric turbulence, (Rosenblatt, M.; Atta, C. Van, Statistical Models and Turbulence (1972), Springer: Springer Berlin, Germany)
[349] Ebadi, S., Quantum phases of matter on a 256-atom programmable quantum simulator, Nature, 595, 227 (2021)
[350] Eckert, M., Fluid mechanics in Sommerfeld’s school, Annu. Rev. Fluid Mech., 47, 1 (2015)
[351] Edwards, S. F., The statistical dynamics of homogeneous turbulence, J. Fluid Mech., 18, 239 (1964) · Zbl 0126.22301
[352] Einstein, A.; Podolsky, B.; Rosen, N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47, 777 (1935) · Zbl 0012.04201
[353] Ellis, R. S.; Haven, K.; Turkington, B., Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows, Nonlinearity, 15, 239 (2002) · Zbl 1068.76041
[354] Elsässer, W. M., The hydromagnetic equations, Phys. Rev., 79, 183 (1950) · Zbl 0037.28802
[355] Elsinga, G. E.; Ishihara, T.; Goudar, M. V.; Da Silva, C. B.; Hunt, J. C.R., The scaling of straining motions in homogeneous isotropic turbulence, J. Fluid Mech., 829, 31 (2017) · Zbl 1460.76352
[356] Elsinga, G. E.; Marusic, I., The anisotropic structure of turbulence and its energy spectrum, Phys. Fluids, 28, Article 011701 pp. (2016)
[357] Esteban, L. B.; Shrimpton, J. S.; Ganapathisubramani, B., Laboratory experiments on the temporal decay of homogeneous anisotropic turbulence, J. Fluid Mech., 862, 99 (2019)
[358] Eyink, G. L., Renormalization group and operator product expansion in turbulence: Shell models, Phys. Rev. E, 48, 1823 (1993)
[359] Eyink, G. L., The renormalization group method in statistical hydrodynamics, Phys. Fluids, 6, 3063 (1994) · Zbl 0830.76042
[360] Eyink, G. L., Exact results on stationary turbulence in 2D: Consequences of vorticity conservation, Physica D, 91, 97 (1996) · Zbl 0896.76027
[361] Eyink, G. L., Local 4/5-law and energy dissipation anomaly in turbulence, Nonlinearity, 16, 137 (2002) · Zbl 1138.76358
[362] Eyink, G. L., Locality of turbulent cascades, Physica D, 207, 91 (2005) · Zbl 1076.76037
[363] Eyink, G. L.; Aluie, H., Localness of energy cascade in hydrodynamic turbulence. I. Smooth coarse graining, Phys. Fluids, 21, Article 115107 pp. (2009) · Zbl 1183.76195
[364] Eyink, G. L.; Drivas, T. D., Lagrangian fluctuation-dissipation relation for scalar turbulence. Part III. Turbulent Rayleigh-Beńard convection, J. Fluid Mech., 836, 560 (2017) · Zbl 1419.76286
[365] Eyink, G. L.; Frisch, U., Robert H. Kraichnan, (Davidson, P. A.; Kaneda, Y.; Moffatt, K.; Sreenivasan, K. R., A Voyage Through Turbulence (2011), Cambridge University Press: Cambridge University Press Cambridge, UK) · Zbl 1387.01014
[366] Eyink, G. L.; Sreenivasan, K. R., Onsager and the theory of hydrodynamic turbulence, Rev. Modern Phys., 78, 87 (2006) · Zbl 1205.01032
[367] Eyink, G. L.; Thomson, D. J., Free decay of turbulence and breakdown of self-similarity, Phys. Fluids, 12, 477 (2000) · Zbl 1149.76372
[368] Fairhall, A.; Dhruva, B.; L’vov, V.; Procaccia, I.; Sreenivasan, K., Fusion rules in Navier-Stokes turbulence: First experimental tests, Phys. Rev. Lett., 79, 3174 (1997)
[369] Fairhall, A.; Gat, O.; L’vov, V.; Procaccia, I., Anomalous scaling in a model of passive scalar advection: Exact results, Phys. Rev. E, 53, 3518 (1996)
[370] Fairhall, A.; L’vov, V.; Procaccia, I., Dissipative scaling functions in Navier-Stokes turbulence: Experimental test, Europhys. Lett., 43, 277 (1998)
[371] Falkovich, G., Inverse cascade and wave condensate in mesoscale atmospheric turbulence, Phys. Rev. Lett., 69, 3173 (1992)
[372] Falkovich, G., Bottleneck phenomenon in developed turbulence, Phys. Fluids, 6, 1411 (1994) · Zbl 0865.76030
[373] Falkovich, G., The Russian school, (Davidson, P. A.; Kaneda, Y.; Moffatt, K.; Sreenivasan, K. R., A Voyage Through Turbulence (2011), Cambridge University Press: Cambridge University Press Cambridge, UK) · Zbl 1387.01007
[374] Falkovich, G.; Fouxon, A., Anomalous scaling of a passive scalar in turbulence and in equilibrium, Phys. Rev. Lett., 94, Article 214502 pp. (2005)
[375] Falkovich, G.; Gawdzki, K.; Vergassola, M., Particles and fields in fluid turbulence, Rev. Modern Phys., 73, 913 (2001) · Zbl 1205.76133
[376] Falkovich, G.; Kolokolov, I.; Lebedev, V.; Migdal, A., Instantons and intermittency, Phys. Rev. E, 54, 4896 (1996)
[377] Falkovich, G.; Lebedev, V., Non-local vorticity cascade in two dimensions, Phys. Rev. E, 49, R1800 (1994)
[378] Falkovich, G.; Lebedev, V., Universal direct cascade in two dimensional turbulence, Phys. Rev. E, 50, 3883 (1994)
[379] Falkovich, G.; Lebedev, V., Single-point velocity distribution in turbulence, Phys. Rev. Lett., 79, 4159 (1997)
[380] Falkovich, G.; Sreenivasan, K. R., Lessons from hydrodynamic turbulencee, Phys. Today, 59, 43 (2006)
[381] Favier, B.; Godeferd, F. S.; Cambon, C., On space and time correlations of isotropic and rotating turbulence, Phys. Fluids, 22, Article 015101 pp. (2010) · Zbl 1183.76198
[382] Favier, B.; Godeferd, F. S.; Cambon, C.; Delache, A.; Bos, W. J., Quasi-static magnetohydrodynamic turbulence at high Reynolds number, J. Fluid Mech., 681, 434 (2011) · Zbl 1241.76293
[383] Ferrari, R.; Wunsch, C., Ocean circulation kinetic energy: Reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253 (2009) · Zbl 1159.76050
[384] Fetter, A. L.; Walecka, J. D., Quantum Field Theory of Many-Particle Systems (1971), McGraw-Hill: McGraw-Hill NY
[385] Feynman, R. P., Simulating physics with computers, Int. J. Theor. Phys., 21, 467 (1982)
[386] Feynman, R. P.; Leiton, R. B.; Sands, M., Feynman Lectures on Physics, vol. 1 (1963), Addison-Wesley: Addison-Wesley Reading, MA
[387] Forman, M. A.; Wicks, R. T.; Horbury, T. S., Detailed fit of “critical balance” theory to solar wind turbulence measurements, Astrophys. J., 733, 76 (2011)
[388] Fornberg, B., A numerical study of 2-D turbulence, J. Comput. Phys., 25, 1 (1977) · Zbl 0461.76040
[389] Forrester, A.; Chu, H. C.; Williams, G. A., Renormalized analytic solution for the enstrophy cascade in two-dimensional quantum turbulence, Phys. Rev. Fluids, 5, 072701(R) (2020)
[390] Forster, D.; Nelson, D. R.; Stephen, M. J., Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A, 16, 732 (1977)
[391] Fournier, J.-D.; Frisch, U., Remarks on the renormalization group in statistical fluid dynamics, Phys. Rev. A, 28, 1000 (1983)
[392] Fournier, J. D.; Frisch, U.; Rose, H. A., Infinite-dimensional turbulence, J. Phys. A, 11, 187 (1978) · Zbl 0375.76051
[393] Fournier, J. D.; Sulem, P. L.; Pouquet, A., Infrared properties of forced magnetohydrodynamic turbulence, J. Phys. A, 15, 1393 (1982) · Zbl 0498.76097
[394] Frederiksen, J. S., Subgrid-scale parameterizations of eddy topographic force, eddy viscosity and stochastic backscatter for flow over topography, J. Atmos. Sci., 56, 1481 (1999)
[395] Frederiksen, J. S., Instability theory and predictability of atmospheric disturbances, (Denier, J.; Frederiksen, J. S., Frontiers in Turbulence and Coherent Structures (2007), World Scientific: World Scientific Singapore) · Zbl 1158.86311
[396] Frederiksen, J. S., Statistical dynamical closures and subgrid modeling for inhomogeneous QG and 3D turbulence, Entropy, 14, 32 (2012)
[397] Frederiksen, J. S., Quasi-diagonal inhomogeneous closure for classical and quantum statistical dynamics, J. Math. Phys., 58, Article 103303 pp. (2017) · Zbl 1379.37118
[398] Frederiksen, J. S.; Davies, A. G., Dynamics and spectra of cumulant update closures for two-dimensional turbulence, Geophys. Astrophys. Fluid Dyn., 92, 197 (2000)
[399] Frederiksen, J. S.; Davies, A. G., The regularized DIA closure for two-dimensional turbulence, Geophys. Astrophys. Fluid Dyn., 98, 203 (2004) · Zbl 1206.76028
[400] Frederiksen, J. S.; Davies, A. G.; Bell, R. C., Closure equations with non-Gaussian restarts for truncated two-dimensional turbulence, Phys. Fluids, 6, 3153 (1994) · Zbl 0829.76042
[401] Frederiksen, J. S.; Dix, M.; Davies, A. G., The effects of closure-based eddy diffusion on the climate and spectra of a GCM, Tellus, 55A, 31 (2003)
[402] Frederiksen, J. S.; Dix, M.; Osbrough, S.; Kitsios, V., Subgrid parameterisations for primitive equation atmospheric models, ANZIAM J., 56, C83 (2015)
[403] Frederiksen, J. S.; Kepert, S. M., Dynamical subgrid-scale parameterizations from direct numerical simulations, J. Atmos. Sci., 63, 3006 (2006)
[404] Frederiksen, J. S.; Kitsios, V.; O’kane, T. J.; Zidikheri, M. J., Stochastic subgrid modelling for geophysical and three-dimensional turbulence, (Franzke, C. J.E.; O’kane, T. J., Nonlinear and Stochastic Climate Dynamics (2017), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK)
[405] Frederiksen, J. S.; O’Kane, T. J., Inhomogeneous closure and statistical mechanics for Rossby wave turbulence over topography, J. Fluid Mech., 539, 137 (2005) · Zbl 1075.76035
[406] Frederiksen, J. S.; O’Kane, T. J., Entropy, closures and subgrid modeling, Entropy, 10, 635 (2008)
[407] Frederiksen, J. S.; O’Kane, T. J., Markovian inhomogeneous closures for rossby waves and turbulence over topography, J. Fluid Mech., 858, 45 (2019) · Zbl 1415.76729
[408] Frederiksen, J. S.; O’Kane, T. J.; Zidikheri, M. J., Subgrid modelling for geophysical flows, Phil. Trans. R. Soc. A, 371, Article 20120166 pp. (2013) · Zbl 1353.86009
[409] Frehlich, R.; Sharman, R., Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data, J. Appl. Meteor. Climatol., 49, 1149 (2010)
[410] Freidberg, J. P., Ideal Magnetohydrodynamics (1987), Plenum Press: Plenum Press New York
[411] Friedrich, J.; Margazoglou, G.; Biferale, L.; Grauer, R., Multiscale velocity correlations in turbulence and Burgers turbulence: Fusion rules, Markov processes in scale, and multifractal predictions, Phys. Rev. E, 98, Article 023104 pp. (2018)
[412] Frisch, U., Turbulence: The Legacy of AN Kolmogorov (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K. · Zbl 0832.76001
[413] Frisch, U.; Bourret, R., Parastochastics, J. Math. Phys., 11, 364 (1970) · Zbl 0187.25902
[414] Frisch, U.; Kurien, S.; Pandit, R.; Pauls, W.; Ray, S. S.; Wirth, A.; Zhu, J. Z., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence, Phys. Rev. Lett., 101, Article 144501 pp. (2008)
[415] Frisch, U.; Lesieur, M.; Brissaud, A., A Markovian random coupling model for turbulence, J. Fluid Mech., 65, 145 (1974) · Zbl 0285.76021
[416] Frisch, U.; Mazzino, A.; Vergassola, M., Intermittency in passive scalar advection, Phys. Rev. Lett., 80, 5532 (1998)
[417] Frisch, U.; Pouquet, A.; Léorat, J.; Mazure, A., Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence, J. Fluid Mech., 68, 769 (1975) · Zbl 0301.76031
[418] Frisch, U.; She, Z. S.; Sulem, P. L., Large-scale flow driven by the anisotropic kinetic alpha effect, Physica D, 28, 382 (1987)
[419] Frisch, U.; Sulem, P. L.; Nelkin, M., A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech., 87, 719 (1978) · Zbl 0395.76051
[420] Frisch, U.; Vergassola, M., A prediction of the multifractal model: The intermediate dissipation range, Europhys. Lett., 14, 439 (1991)
[421] Fujisawa, A.; Itoh, K.; Iguchi, H.; Matsuoka, K.; Okamura, S.; Shimizu, A.; Minami, T.; Yoshimura, Y.; Nagaoka, K.; Takahashi, C.; Kojima, M.; Nakano, H.; Ohsima, S.; Nishimura, S.; Isobe, M.; Suzuki, C.; Akiyama, T.; Ida, K.; Toi, K.; Itoh, S.-I.; Diamond, P. H., Identification of zonal flows in a toroidal plasma, Phys. Rev. Lett., 93, Article 165002 pp. (2004)
[422] Fukami, K.; Fukagata, K.; Taira, K., Super-resolution reconstruction of turbulent flows with machine learning, J. Fluid Mech., 870, 106 (2019)
[423] Fukami, K.; Fukagata, K.; Taira, K., Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows, J. Fluid Mech., 909, A9 (2021) · Zbl 1461.76306
[424] Fung, J. C.H.; Hunt, J. C.R.; Malik, N. A.; Perkins, R. J., Kinematic simulation of homogeneous turbulence by unsteady random fourier modes, J. Fluid Mech., 236, 281 (1992) · Zbl 0764.76028
[425] Gage, K. S., Evidence for a \(k^{- 5 / 3}\) law inertial range in mesoscale two-dimensional turbulence, J. Atmos. Sci., 36, 1950 (1979)
[426] Gaillard, M. K.; Grannis, P. D.; Sciulli, F. J., The standard model of particle physics, Rev. Modern Phys., 71, S96 (1999)
[427] Gaitan, F., Finding flows of a Navier-Stokes fluid through quantum computing, NPJ Quantum Inf., 6, 61 (2020)
[428] Galanti, B.; Tsinober, A., Is turbulence ergodic?, Phys. Lett. A, 330, 173 (2004) · Zbl 1209.76013
[429] (Galperin, B.; Read, P., Zonal Jets (2019), Cambridge University Press: Cambridge University Press Cambridge, U.K)
[430] Galperin, B.; Sukoriansky, S.; Dikovskaya, N., Geophysical flows with anisotropic turbulence and dispersive waves: Flows with a \(\beta \)-effect, Ocean Dyn., 60, 427 (2010)
[431] Galtier, S., Weak inertial-wave turbulence theory, Phys. Rev. E, 68 (2003), 015301(R)
[432] Galtier, S., Turbulence in space plasmas and beyond, J. Phys. A, 51, Article 293001 pp. (2018) · Zbl 1400.85009
[433] Galtier, S.; David, V., Inertial/kinetic-Alfvén wave turbulence: A twin problem in the limit of local interactions, Phys. Rev. Fluids, 5, Article 044603 pp. (2020)
[434] Galtier, S.; Nazarenko, S. V.; Newell, A. C.; Pouquet, A., A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys., 63, 447 (2000)
[435] Gao, F., Mapping closure and non-Gaussianity of the scalar probability density functions in isotropic turbulence, Phys. Fluids A, 3, 2438 (1991) · Zbl 0746.76052
[436] Garnier, M.; Alemany, A.; Sulem, P. L.; Pouquet, A., Influence of an external magnetic field on large scale low magnetic Reynolds number MHD turbulence, J. Mec., 20, 233 (1981) · Zbl 0503.76119
[437] Gat, O.; Procaccia, I.; Zeitak, R., Anomalous scaling in passive scalar advection: Monte Carlo Lagrangian trajectories, Phys. Rev. Lett., 80, 5536 (1998)
[438] Gatski, T. B.; Speziale, C. G., On explicit algebraic stress models for complex turbulent flows, J. Fluid Mech., 254, 59 (1993) · Zbl 0781.76052
[439] Gawedzki, K.; Kupiainen, A., Anomalous scaling of the passive scalar, Phys. Rev. Lett., 75, 3834 (1995)
[440] Geer, A. J., Learning earth system models from observations: Machine learning or data assimilation?, Philos. Trans. R. Soc. London A, 379, Article 20200089 pp. (2021)
[441] Gharib, M.; Kremers, D.; Koochesfahani, M.; Kemp, M., Leonardo’s vision of flow visualization, Exp. Fluids, 33, 219 (2002)
[442] Ghil, M.; Lucarini, V., The physics of climate variability and climate change, Rev. Modern Phys., 92, Article 035002 pp. (2020)
[443] Gibney, E.; Castelvecchi, D., Planet pioneers win physics nobel, Nature, 574, 162 (2019)
[444] Girimaji, S., A mapping closure for turbulent scalar mixing using a time-evolving reference field, Phys. Fluids A, 4, 2875 (1992) · Zbl 0775.76080
[445] Girimaji, S. S.; Zhou, Y., Spectrum and energy transfer in steady Burgers turbulence, Phys. Lett. A, 202, 279 (1995)
[446] Gkioulekas, E., On the elimination of the sweeping interactions from theories of hydrodynamic turbulence, Physica D, 226, 151 (2007) · Zbl 1115.76034
[447] Gkioulekas, E., Locality and stability of the cascades of two-dimensional turbulence, Phys. Rev. E, 78, Article 066302 pp. (2008)
[448] Gkioulekas, E., Dissipation scales and anomalous sinks in steady two-dimensional turbulence, Phys. Rev. E, 82, Article 046304 pp. (2010)
[449] Gkioulekas, E., The effect of asymmetric large-scale dissipation on energy and potential enstrophy injection in two-layer quasi-geostrophic turbulence, J. Fluid. Mech., 694, 493 (2012) · Zbl 1250.76180
[450] Gkioulekas, E., Energy and potential enstrophy flux constraints in the two-layer quasi-geostrophic model, Physica D, 284, 27 (2014) · Zbl 1349.76056
[451] Gkioulekas, E., Multi-locality and fusion rules on the generalized structure functions in two-dimensional and three-dimensional Navier-Stokes turbulence, Phys. Rev. E, 94, Article 033105 pp. (2016)
[452] Gkioulekas, E., The role of the asymmetric ekman dissipation term on the energetics of the two-layer quasi- geostrophic model, Physica D, 403, Article 132372 pp. (2020) · Zbl 1484.76086
[453] Gkioulekas, E.; Tung, K. K., On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation, Discrete Contin. Dyn. Syst. Ser. B, 5, 79 (2005) · Zbl 1115.76033
[454] Gkioulekas, E.; Tung, K. K., On the double cascades of energy and enstrophy in two dimensional turbulence. Part 2. Approach to the KLB limit and interpretation of experimental evidence, Discrete Contin. Dyn. Syst. Ser. B, 5, 103 (2005) · Zbl 1115.76333
[455] Gkioulekas, E.; Tung, K. K., Recent developments in understanding two-dimensional turbulence and the Nastrom-Gage spectrum, J. Low Temp. Phys., 145, 25 (2006)
[456] Gkioulekas, E.; Tung, K. K., Is the subdominant part of the energy spectrum due to downscale energy cascade hidden in quasi-geostrophic turbulence?, Discrete Contin. Dyn. Syst. Ser. B, 7, 293 (2007) · Zbl 1390.86033
[457] Gleick, J., A.N. Kolmogorov Dies at 84; Top Russian Mathematician, 26 (1987), New York Times, Oct. 23, Section A
[458] Gleick, J., Genius: The Life and Science of Richard Feynman (1993), Vintage: Vintage NY
[459] Godeferd, F. S.; Moisy, F., Structure and dynamics of rotating turbulence: A review of recent experimental and numerical results, Appl. Mech. Rev., 67, Article 030802 pp. (2015)
[460] Goedbloed, J. P.H.; Keppens, R.; Poedts, J. P., Advanced Magnetohydrodynamics: With Applications To Laboratory and Astrophysical Plasmas (2010), Cambridge university press: Cambridge university press Cambridge, UK
[461] Goedbloed, J. P.H.; Poedts, J. P., Principles of Magnetohydrodynamics: With Applications To Laboratory and Astrophysical Plasmas (2004), Cambridge university press: Cambridge university press Cambridge, UK
[462] Gogoberidze, G.; Chapman, S. C.; Hnat, B., Scale disparity and spectral transfer in anisotropic numerical turbulence, Phys. Plasmas, 19, Article 102310 pp. (2012)
[463] Gogoberidze, G.; Perri, S.; Carbone, V., The Yaglom law in the expanding solar wind, Astrophys. J., 769, 111 (2013)
[464] Goldreich, P.; Sridhar, S., Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence, Astrophys. J., 438, 763 (1995)
[465] Goldreich, P.; Sridhar, S., Magnetohydrodynamic turbulence revisited, Astrophys. J., 485, 680 (1997)
[466] Goldstein, M. L.; Roberts, D. A.; Matthaeus, W. H., Magnetohydrodynamic turbulence in the solar wind, Annu. Rev. Astron. Astrophys., 33, 283 (1995)
[467] Gomez, T.; Politano, H.; Pouquet, A., On the validity of a nonlocal approach for MHD turbulence, Phys. Fluids, 11, 2298 (1999) · Zbl 1147.76397
[468] Gomez, T.; Sagaut, P.; Schilling, O.; Zhou, Y., Large-eddy simulation of very large kinetic and magnetic Reynolds number isotropic magnetohydrodynamic turbulence using a spectral subgrid model, Phys. Fluids, 19, Article 048101 pp. (2007) · Zbl 1146.76395
[469] Gorbunova, A.; Balarac, G.; Bourgoin, M.; Canet, L.; Mordant, N.; Rossetto, V., Analysis of the dissipative range of the energy spectrum in grid turbulence and in direct numerical simulations, Phys. Rev. Fluids, 5, Article 044604 pp. (2020)
[470] Goto, S., A physical mechanism of the energy cascade in homogeneous isotropic turbulence, J. Fluid Mech., 605, 355 (2008) · Zbl 1145.76024
[471] Goto, S.; Kida, S., Direct-interaction approximation and Reynolds-number reversed expansion for a dynamical system, Physica D, 117, 191 (1998) · Zbl 0958.76035
[472] Goto, S.; Kida, S., Passive scalar spectrum in isotropic turbulence: Prediction by the Lagrangian direct-interaction approximation, Phys. Fluids, 11, 1936 (1999) · Zbl 1147.76398
[473] Goto, S.; Kida, S., Sparseness of nonlinear coupling: Importance in sparse direct-interaction perturbation, Nonlinearity, 15, 1499 (2002) · Zbl 1082.76058
[474] Goto, S.; Saito, Y.; Kawahara, G., Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers, Phys. Rev. Fluids, 2, Article 064603 pp. (2017)
[475] Gotoh, T., Passive scalar diffusion in two dimensional turbulence in the Lagrangian renormalized approximation, J. Phys. Soc. Japan, 58, 2365 (1989)
[476] Gotoh, T., Inertial range statistics of Burgers turbulence, Phys. Fluids, 6, 3985 (1994) · Zbl 0876.76035
[477] Gotoh, T.; Kaneda, Y.; Bekki, N., Numerical integration of the Lagrangian renormalized approximation, J. Phys. Soc. Japan, 57, 866 (1988)
[478] Gotoh, T.; Kraichnan, R. H., Statistics of decaying Burgers turbulence, Phys. Fluids A, 5, 445 (1993) · Zbl 0767.76024
[479] Gotoh, T.; Kraichnan, R. H., Steady-state Burgers turbulence with large-scale forcing, Phys. Fluids, 10, 2859 (1998) · Zbl 1185.76755
[480] Gotoh, T.; Nagaki, J.; Kaneda, Y., Passive scalar spectrum in the viscous-convective range in two-dimensional steady turbulence, Phys. Fluids, 12, 155 (2000) · Zbl 1149.76387
[481] Gotoh, T.; Rogallo, R. S.; Herring, J. R.; Kraichnan, R. H., Lagrangian velocity correlations in homogeneous isotropic turbulence, Phys. Fluids A, 5, 2846 (1993) · Zbl 0804.76044
[482] Gotoh, T.; Watanabe, T., Statistics of transfer fluxes of the kinetic energy and scalar variance, J. Turbul., 6, N33 (2005)
[483] Gotoh, T.; Watanabe, T., Power and nonpower laws of passive scalar moments convected by isotropic turbulence, Phys. Rev. Lett., 115, Article 114502 pp. (2015)
[484] Gotoh, T.; Watanabe, T.; Miura, H., Spectrum of passive scalar at very high schmidt number in turbulence, Plasma Fusion Res., 9, Article 3401019 pp. (2014)
[485] Gotoh, T.; Watanabe, Y.; Shiga, Y.; Nakano, T.; Suzuki, E., Statistical properties of four-dimensional turbulence, Phys. Rev. E, 75, Article 016310 pp. (2008)
[486] Gotoh, T.; Watanabe, T.; Suzuki, Y., Universality and anisotropy in passive scalar fluctuations in turbulence with uniform mean gradient, J. Turbul., 12, N48 (2011)
[487] Götze, W., Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (2008), Oxford Univ. Press: Oxford Univ. Press Oxford, UK
[488] Grabowski, W. W., Representation of turbulent mixing and buoyancy reversal in bulk cloud models, J. Atmos. Sci., 64, 3666 (2007)
[489] Graham, J. P.; Mininni, P. D.; Pouquet, A., High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model, Phys. Rev. E, 84, Article 016314 pp. (2011)
[490] Grant, H. L.; Hughes, B. A.; Vogel, W. M.; Moilliet, A., The spectrum of temperature fluctuations in turbulent flow, J. Fluid Mech., 34, 423 (1968)
[491] Grant, H. L.; Stewart, R. W.; Moilliet, A., Turbulence spectra from a tidal channel, J. Fluid Mech., 12, 241 (1962) · Zbl 0101.43101
[492] Grappin, R.; Frisch, U.; Pouquet, A.; Leorat, J., Alfvénic fluctuations as asymptotic states of MHD turbulence, Astron. Astrophys., 105, 6 (1982) · Zbl 0483.76122
[493] Grappin, R.; Leorat, J.; Pouquet, A., Dependence of MHD turbulence spectra on the velocity field-magnetic field correlation, Astron. Astrophys., 126, 51 (1983)
[494] Grappin, R.; Müller, W. C.; Verdini, A., Alfvén-dynamo balance and magnetic excess in magnetohydrodynamic turbulence, Astron. Astrophys., 589, A131 (2016)
[495] Gravanis, E.; Akylas, E., Isotropic turbulence in compact space, J. Fluid Mech., 822, 512 (2017) · Zbl 1383.76283
[496] Gréa, B. J.; Burlot, A.; Godeferd, F.; Griffond, J.; Soulard, O.; Cambon, C., Dynamics and structure of unstably stratified homogeneous turbulence, J. Turbul., 17, 651 (2016)
[497] Gréa, B. J.; Soulard, O., The Turbulence Cascade in Physical Space, (Gorokhovski, M.; Godeferd, F. S., Turbulent Cascades II (2019), Springer: Springer Cham, Switzerland)
[498] (Griffin, A.; Snoke, D.; Stringari, S., Bose-Einstein Condensation (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK)
[499] Griffond, J.; Gréa, B. J.; Soulard, O., Unstably stratified homogeneous turbulence as a tool for turbulent mixing modeling, ASME J. Fluids Eng., 136, Article 091201 pp. (2014)
[500] Griffond, J.; Gréa, B. J.; Soulard, O., Numerical investigation of self-similar unstably stratified homogeneous turbulence, J. Turbul., 16, 167 (2015)
[501] Gronskis, A.; Heitz, D.; Mémin, E., Inflow and initial conditions for direct numerical simulation based on adjoint data assimilation, J. Comput. Phys., 242, 480 (2013) · Zbl 1299.76099
[502] Gross, E. P., Structure of a quantized vortex in boson systems, LI Nuovo Cimento, 20, 454 (1961) · Zbl 0100.42403
[503] Gross, E. P., Hydrodynamics of a superfluid condensate, J. Math. Phys., 4, 195 (1963)
[504] Grossmann, S.; Lohse, D., Scale resolved intermittency in turbulence, Phys. Fluids, 6, 611 (1994)
[505] Grossmann, S.; Lohse, D.; Reeh, A., Multiscale correlations and conditional averages in numerical turbulence, Phys. Rev. E, 61, 5195 (2000)
[506] Grossmann, A.; Morlet, J., Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., 15, 723 (1984) · Zbl 0578.42007
[507] Gurarie, V.; Migdal, A., Instantons in the Burgers equation, Phys. Rev. E, 54, 4908 (1996)
[508] Gurbatov, S. N.; Simdyankin, S. I.; Aurell, E.; Frisch, U.; Toth, G., On the decay of Burgers turbulence, J. Fluid Mech., 344, 339 (1997) · Zbl 0941.76040
[509] Gad-el Hak, M., Fluid mechanics from the beginning to the third millennium, Intl. J. Eng. Ed., 14, 177 (1998)
[510] Halpin-Healy, T.; Zhang, Y. C., Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics, Phys. Rep., 254, 215 (1995)
[511] Hamba, F.; Kanamoto, K., Analysis of destruction term in transport equation for turbulent energy dissipation rate, Theoret. Comput. Fluid Dyn., 33, 181 (2019)
[512] Hanna, S. R., Lagrangian and Eulerian time-scale relation in the daytime boundary layer, J. Appl. Meteorol., 20, 242 (1981)
[513] Hardenberg, J. von; McWilliams, J. C.; Provenzale, A.; Shchepetkin, A.; Weiss, J. B., Vortex merging in quasi-geostrophic flows, J. Fluid Mech., 412, 331 (2000) · Zbl 0955.76018
[514] Harlim, J.; Oczkowski, M.; Yorke, J. A.; Kalnay, E.; Hunt, B. R., Convex error growth patterns in a global weather model, Phys. Rev. Lett., 94, Article 228501 pp. (2005)
[515] Hartke, G. J.; Canuto, V. M.; Alonso, C. T., A direct interaction approximation treatment of turbulence in a compressible fluid. I. Formalism, Phys. Fluids, 31, 1034 (1988) · Zbl 0663.76055
[516] Hartmann, D. L.; Ockert-Bell, M. E.; Michelsen, M. L., The effect of cloud type on earth’s energy balance: Global analysis, J. Clim., 5, 1281 (1992)
[517] Hasegawa, A.; Maclennan, C. G.; Kodama, Y., Nonlinear behavior and turbulence spectra of drift waves and Rossby waves, Phys. Fluids, 22, 2122 (1979) · Zbl 0424.76095
[518] Hattori, Y.; Rubinstein, R.; Ishizawa, A., Shell model for rotating turbulence, Phys. Rev. E, 70, Article 046311 pp. (2004)
[519] He, G. W.; Chen, S.; Kraichnan, R. H.; Zhang, R.; Zhou, Y., Statistics of dissipation and enstrophy induced by localized vortices, Phys. Rev. Lett., 81, 4636 (1998)
[520] He, G. W.; Jin, G.; Yang, Y., Space-time correlations and dynamic coupling in turbulent flows, Annu. Rev. Fluid Mech., 49, 51 (2017) · Zbl 1359.76152
[521] He, G. W.; Wang, M.; Lele, S. K., On the computation of space-time correlations by large-eddy simulation, Phys. Fluids, 16, 3859 (2004) · Zbl 1187.76208
[522] He, X.; Tong, P., Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection, Phys. Rev. E, 83, Article 037302 pp. (2011)
[523] Heisenberg, W., Zur statistischen theorie der turbulenz, Z. Phys., 124, 628 (1948) · Zbl 0034.26903
[524] Heisenberg, W., On the theory of statistical and isotropic turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 195, 402 (1948) · Zbl 0035.25605
[525] Helmholtz, H. von, On the discontinuous movements of fluids, Mon.ber. Dtsch. Akad. Wiss. Berl., 23, 215 (1868)
[526] Herbert, C.; Dubrulle, B.; Chavanis, P. H.; Paillard, D., Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere, Phys. Rev. E, 85, Article 056304 pp. (2012)
[527] Herbert, C.; Dubrulle, B.; Chavanis, P. H.; Paillard, D., Statistical mechanics of quasi-geostrophic flows on a rotating sphere, J. Stat. Mech., P05023 (2012)
[528] Herring, J. R., Self-consistent-field approach to turbulence theory, Phys. Fluids, 8, 2219 (1965) · Zbl 0139.44701
[529] Herring, J. R., Self-consistent-field approach to nonstationary turbulence, Phys. Fluids, 9, 2106 (1966) · Zbl 0166.22502
[530] Herring, J. R., Approach of axisymmetric turbulence to isotropy, Phys. Fluids, 17, 859 (1974) · Zbl 0366.76045
[531] Herring, J. R., On the statistical theory of two-dimensional topographic turbulence, J. Atmos. Sci., 34, 1731 (1977)
[532] Herring, J. R., Theoretical calculations of turbulent bispectra, J. Fluid Mech., 97, 193 (1980)
[533] Herring, J. R., Statistical theory of quasi-geostrophic turbulence, J. Atmos. Sci., 37, 969 (1980)
[534] Herring, J. R., The predictability of quasigeostrophic flows, AIP Conf. Proc., 106, 321 (1984)
[535] Herring, J. R., Some contributions of two-point closure to turbulence, (Davis, S. H.; Lumley, J. L., Frontiers in Fluid Mechanics (1985), Springer: Springer Berlin, Germary)
[536] Herring, J. R., The utility and drawbacks of traditional approaches, (Lumley, J. L., Whither Turbulence? Turbulence at the Crossroads (1990), Springer: Springer Berlin, Germary)
[537] Herring, J. R., Comparison of closure to spectral-based large eddy simulations, Phys. Fluids A, 2, 979 (1990)
[538] Herring, J. R., Book review: ‘The Physics of Fluid Turbulence,’ by W.D. McComb, Geophys. Astrophys. Fluid Dyn., 63, 215 (1992)
[539] Herring, J.R., 1999. Statistical approximations and the physics of turbulence. In: Proc. FEDSM99 Fluid Engineering Division Summer Meeting, July 18-23, 1999, San Francisco, California, USA.
[540] Herring, J. R.; Kerr, R. M., Comparison of direct numerical simulations with predictions of two-point closures for isotropic turbulence convecting a passive scalar, J. Fluid Mech., 118, 205 (1982) · Zbl 0483.76057
[541] Herring, J. R.; Kerr, R. M., Small-scale structures in turbulence: Their implications for turbulence closures, (Dracos, Th.; Tsinober, A., New Approaches and Concepts in Turbulence (1993), Birkhäuser: Birkhäuser Basel)
[542] Herring, J. R.; Kraichnan, R. H., Comparison of Some Approximations for Isotropic Turbulence, (Rosenblatt, M.; Van Atta, C., Statistical Models and Turbulence (1972), Springer: Springer Berlin, Germany) · Zbl 0233.76104
[543] Herring, J. R.; Kraichnan, R. H., A numerical comparison of velocity-based and strain-based Lagrangian-history turbulence approximations, J. Fluid Mech., 91, 581 (1979) · Zbl 0412.76043
[544] Herring, J. R.; McWilliams, J. C., Comparison of direct numerical simulation of two-dimensional turbulence with two-point closure: The effects of intermittency, J. Fluid Mech., 153, 229 (1985) · Zbl 0585.76069
[545] Herring, J. R.; Orszag, S. A.; Kraichnan, R. H.; Fox, D. G., Decay of two-dimensional homogeneous turbulence, J. Fluid Mech., 66, 417 (1974) · Zbl 0296.76026
[546] Herring, J. R.; Riley, J. J.; Patterson, G. S.; Kraichnan, R. H., Growth of uncertainty in decaying isotropic turbulence, J. Atmos. Sci., 30, 997 (1973)
[547] Herring, J. R.; Schertzer, D.; Lesieur, M.; Newman, G. R.; Chollet, J. P.; Larcheveque, M., A comparative assessment of spectral closures as applied to passive scalar diffusion, J. Fluids Mech., 124, 411 (1982) · Zbl 0504.76059
[548] Higgins, C. W.; Katul, G. G.; Froidevaux, M.; Simeonov, V.; Parlange, M. B., Are atmospheric surface layer flows ergodic?, Geophys. Res. Lett., 40, 3342 (2013)
[549] Hill, R. J., Models of the scalar spectrum for turbulent advection, J. Fluid Mech., 88, 541 (1978) · Zbl 0401.76048
[550] Hinze, J. O., Turbulence (1959), McGraw-Hill: McGraw-Hill New York
[551] Hnatich, E.; Honkonen, J.; Jurčišin, M.; Mazzino, A.; Sprinc, S., Anomalous scaling of passively advected magnetic field in the presence of strong anisotropy, Phys. Rev. E, 71, Article 066312 pp. (2005)
[552] Hnatič, M.; Kalagov, G.; Nalimov, M., Turbulent mixing of a critical fluid: The non-perturbative renormalization, Nuclear Phys. B, 926, 1 (2018) · Zbl 1380.82049
[553] Hnatič, M.; Zalom, P., Helical turbulent Prandtl number in the \(A\) model of passive vector advection, Phys. Rev. E, 94, Article 053113 pp. (2016)
[554] Hodgson, L. S.; Brandenburg, A., Turbulence effects in planetesimal formation, Astron. Astrophys., 330, 1169 (1998)
[555] Holloway, G., A spectral theory of nonlinear barotropic motion above irregular topographys, J. Phys. Oceanogr., 8, 414 (1978)
[556] Holloway, G., Eddies, waves, circulation, and mixing: Statistical geofluid mechanics, Annu. Rev. Fluid Mech., 18, 91 (1986) · Zbl 0609.76041
[557] Holloway, G., Representing topographic stress for large-scale ocean models, J. Phys. Oceanogr., 22, 1033 (1992)
[558] Holloway, G., Entropic forces in geophysical fluid dynamics, Entropy, 11, 360 (2009)
[559] Holm, D. D.; Marsden, J. E.; Ratiu, T.; Weinstein, A., Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123, 1 (1985) · Zbl 0717.76051
[560] Hooke, R., A spot in one of the belts of Jupiter, Philos. Trans. R. Soc. London, 1, 3 (1667)
[561] Hopf, W., Statistical hydromechanics and functional calculus, J. Rational Mech. Analysis, 1, 87 (1952) · Zbl 0049.41704
[562] Horbury, T. S.; Forman, M.; Oughton, S., Anisotropic scaling of magnetohydrodynamic turbulence, Phys. Rev. Lett., 101, Article 175005 pp. (2008)
[563] Hossain, M.; Gray, P. C.; Pontius, D. H.; Matthaeus, W. H.; Oughton, S., Phenomenology for the decay of energy-containing eddies in homogeneous MHD turbulence, Phys. Fluids, 7, 2886 (1995) · Zbl 1026.76569
[564] Hou, T. Y.; Wu, X. H.; Chen, S.; Zhou, Y., Effect of finite computational domain on turbulence scaling law in both physical and spectral spaces, Phys. Rev. E, 58, 5841 (1998)
[565] Howes, G. G., A dynamical model of plasma turbulence in the solar wind, Philos. Trans. R. Soc. A, 373, Article 20140145 pp. (2015)
[566] Huang, K., Introduction To Statistical Physics (2001), Taylor & Francis: Taylor & Francis London, U.K · Zbl 1137.82300
[567] Huang, X.; Jain, N.; Abkar, M.; Kunz, N. R.; Yang, X., Determining a priori a RANS model’s applicable range via global epistemic uncertainty quantification, Comput. Fluids (2021) · Zbl 1521.76229
[568] Hughes, T. P., Global warming and recurrent mass bleaching of corals, Nature, 543, 373 (2017)
[569] Hughes, T. P., Spatial and temporal patterns of mass bleaching of corals in the anthropocene, Science, 359, 80 (2018)
[570] Hundhausen, A. J., Coronal Expansion and Solar Wind (1972), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[571] Hunt, J.; Kevlahan, N., Rapid distortion theory and the structure of turbulence, (New Approaches and Concepts in Turbulence (1993), Birkhauser Verlag: Birkhauser Verlag Basel)
[572] Hunt, J. C.R.; Phillips, O. M.; Williams, D., Turbulence and stochastic process: Kolmogorov’s ideas 50 years on, Proc. R. Soc. London, 434 (1991) · Zbl 0746.00035
[573] Ingersoll, A. P., Atmospheric dynamics of the outer planets, Science, 248, 308 (1990)
[574] Inoue, E., On the turbulent diffusion in the atmosphere, J. Met. Soc. Jpn., 29, 246 (1951)
[575] Intrieri, J. M.; Shupe, M. D.; Uttal, T.; McCarty, B. J., An annual cycle of arctic cloud characteristics observed by radar and lidar at SHEBA, J. Geophys. Res. Oceans, 107 (2002), https://doi.org/10.1029/2000JC000423
[576] Iroshnikov, P. S., Turbulence of a conducting fluid in a strong magnetic field, Astron. Zh., 40, 742 (1963)
[577] Ishida, T.; Davidson, P. A.; Kaneda, Y., On the decay of isotropic turbulence, J. Fluid Mech., 564, 455 (2006) · Zbl 1100.76028
[578] Ishihara, T.; Gotoh, T.; Kaneda, Y., Study of high-Reynolds number isotropic turbulence by direct numerical simulation, Annu. Rev. Fluid Mech., 41, 165 (2009) · Zbl 1157.76017
[579] Ishihara, T.; Kaneda, Y., Frequency shifts of Rossby waves in the inertial subranges of \(\beta \)-plane turbulence, Phys. Fluids, 13, 2338 (2001) · Zbl 1184.76246
[580] Ishihara, T.; Kaneda, Y.; Hunt, J. C.R., Thin shear layers in high Reynolds number turbulence—DNS results, Flow Turbul. Combust., 91, 895 (2013)
[581] Ishihara, T.; Kaneda, Y.; Yokokawa, M.; Itakura, K.; Uno, A., Energy spectrum in the near dissipation range of high resolution direct numerical simulation of turbulence, J. Phys. Soc. Japan, 74, 1464 (2005)
[582] Ishihara, T.; Morishita, K.; Yokokawa, M.; Uno, A.; Kaneda, Y., Energy spectrum in high-resolution direct numerical simulations of turbulence, Phys. Rev. Fluids, 1, Article 082403 pp. (2016)
[583] Ishihara, T.; Yoshida, K.; Kaneda, Y., Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow, Phys. Rev. Lett., 88, Article 154501 pp. (2002)
[584] Iwayama, T.; Okazaki, S.; Watanabe, T., Numerical investigation of the Danilov inequality for two-layer quasi-geostrophic systems, Fluid Dyn. Res., 51, Article 055507 pp. (2019)
[585] Iyer, K. P.; Bewley, G. P.; Biferale, L.; Sreenivasan, K. R.; Yeung, P. K., Oscillations modulating power law exponents in isotropic turbulence: Comparison of experiments with simulations, Phys. Rev. Lett., 126, Article 254501 pp. (2021)
[586] Iyer, K. P.; Bonaccorso, F.; Biferale, L.; Toschi, F., Multiscale anisotropic fluctuations in sheared turbulence with multiple states, Phys. Rev. Fluids, 2, Article 052602 pp. (2017)
[587] Iyer, K. P.; Mazzitelli, I.; Bonaccorso, F.; Pouquet, A.; Biferale, L., Rotating turbulence under precession-like perturbation, Eur. Phys. J. E, 38, 128 (2015)
[588] Iyer, K. P.; Schumacher, J.; Sreenivasan, K. R.; Yeung, P. K., Steep cliffs and saturated exponents in three-dimensional scalar turbulence, Phys. Rev. Lett., 121, Article 264501 pp. (2018)
[589] Iyer, K. P.; Sreenivasan, K. R.; Yeung, P. K., Reynolds number scaling of velocity increments in isotropic turbulence, Phys. Rev. E, 95, Article 021101 pp. (2017)
[590] Iyer, K. P.; Sreenivasan, K. R.; Yeung, P. K., Circulation in high Reynolds number isotropic turbulence is a bifractal, Phys. Rev. X, 9, Article 041006 pp. (2019)
[591] Iyer, K. P.; Sreenivasan, K. R.; Yeung, P. K., Scaling exponents saturate in three-dimensional isotropic turbulence, Phys. Rev. Fluids, 5, Article 054605 pp. (2020)
[592] Jackson, D.; Launder, B., Osborne Reynolds and the publication of his papers on turbulent flow, Annu. Rev. Fluid Mech., 39, 19 (2007) · Zbl 1296.76003
[593] Janssen, H. K., Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties, Z. Phys. B, 23, 377 (1976)
[594] Jaynes, E. T., Information theory and statistical mechanics, Phys. Rev., 106, 620 (1957) · Zbl 0084.43701
[595] Jaynes, E. T., Information theory and statistical mechanics II, Phys. Rev., 108, 171 (1957) · Zbl 0084.43701
[596] Jaynes, E. T., Probability Theory - The Logic of Science (2003), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K · Zbl 1045.62001
[597] Ji, Z.; Natarajan, A.; Vidick, T.; Wright, J.; Yuen, H., MIP \({}^\ast =Re (2020)\), arXiv preprint arXiv:2001.04383
[598] Jiang, Z.; Xiao, Z.; Shi, Y.; Chen, S., Constrained large-eddy simulation of wall-bounded compressible turbulent flows, Phys. Fluids, 25, Article 106102 pp. (2013)
[599] Jiang, Z.; Xiao, Z.; Shi, Y.; Chen, S., Constrained large-eddy simulation of turbulent flow and heat transfer in a stationary ribbed duct, Internat. J. Numer. Methods Heat Fluid Flow, 26, 1069 (2016) · Zbl 1356.76127
[600] Jiménez, J., Machine-aided turbulence theory, J. Fluid Mech., 854, R1 (2018) · Zbl 1415.76249
[601] Jiménez, J.; Cardesa, J. I.; Lozano-Durán, A., The turbulence cascade in physical space, (Gorokhovski, M.; Godeferd, F. S., Turbulent Cascades II (2019), Springer: Springer Cham, Switzerland)
[602] Jiménez, J.; Wray, A. A.; Saffman, P. G.; Rogallo, R. S., The structure of intense vorticity in isotropic turbulence, J. Fluid Mech., 255, 65 (1993) · Zbl 0800.76156
[603] Jordan, R.; Turkington, B., Ideal magnetofluid turbulence in two dimensions, J. Stat. Phys., 87, 661 (1997) · Zbl 0952.76558
[604] Joseph, D. D., Fluid dynamics of two miscible liquids with diffusion and gradient stresses, Eur. J. Mech. B Fluids, 9, 565 (1990)
[605] Joyce, G.; Montgomery, D., Negative temperature states for the two-dimensional guiding-centre plasma, J. Plasma Phys., 10, 107 (1973)
[606] Judt, F., Insights into atmospheric predictability through global convection-permitting model simulations, J. Atmos. Sci., 75, 1477 (2018)
[607] Jumars, P. A.; Trowbridge, J. H.; Boss, E.; Karp-Boss, L., Turbulence-plankton interactions: A new cartoon, Mar. Ecol., 30, 133 (2009)
[608] Jurčišinová, E.; Jurčišin, M., Anomalous scaling of a passive scalar advected by a turbulent velocity field with finite correlation time and uniaxial small-scale anisotropy, Phys. Rev. E, 77, Article 016306 pp. (2008)
[609] Jurčišinová, E.; Jurčišin, M., Anomalous scaling of the magnetic field in the compressible Kazantsev-Kraichnan model: Two-loop renormalization group analysis, Phys. Rev. E, 88 (2013), 011004(R) · Zbl 1339.82003
[610] Jurčišinová, E.; Jurčišin, M., Anomalous scaling of the magnetic field in the helical Kazantsev-Kraichnan model, Phys. Rev. E, 91, Article 063009 pp. (2015) · Zbl 1339.82003
[611] Jurčišinová, E.; Jurčišin, M.; Menkyna, M., Simultaneous influence of helicity and compressibility on anomalous scaling of the magnetic field in the Kazantsev-Kraichnan model, Phys. Rev. E, 95, Article 053210 pp. (2017)
[612] Jurčišinová, E.; Jurčišin, M.; Menkyna, M., Anomalous scaling in the Kazantsev-Kraichnan model with finite time correlations: Two-loop renormalization group analysis of relevant composite operators, Eur. Phys. J. B, 91, 313 (2018) · Zbl 1515.82118
[613] Jurčišinová, E.; Jurčišin, M.; Remecký, R., Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field, Phys. Rev. E, 80, Article 046302 pp. (2009) · Zbl 1421.76058
[614] Jurčišinová, E.; Jurčišin, M.; Remecký, R.; Zalom, P., Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: Two-loop renormalization group result, Phys. Rev. E, 87, Article 043010 pp. (2013)
[615] Jurčišinová, E.; Jurčišin, M.; Zalom, P., Turbulent Prandtl number of a passively advected vector field in helical environment: Two-loop renormalization group result, Phys. Rev. E, 89, Article 043023 pp. (2014)
[616] Jüttner, B.; Thess, A.; Sommeria, J., On the symmetry of self-organized structures in two-dimensional turbulence, Phys. Fluids, 7, 2108 (1995) · Zbl 1025.76542
[617] Kacewicz, B., Optimal solution of ordinary differential equations, J. Complexity, 3, 451 (1987) · Zbl 0643.65033
[618] Kacewicz, B., Randomized and quantum algorithms yield a speed-up for initial value problems, J. Complexity, 20, 821 (2004) · Zbl 1073.68097
[619] Kacewicz, B., Improved bounds on randomized and quantum complexity of initialvalue problems, J. Complexity, 21, 740 (2005) · Zbl 1082.65069
[620] Kacewicz, B., Almost optimal solution of initial-value problems by randomized and quantum algorithms, J. Complexity, 22, 676 (2006) · Zbl 1111.65063
[621] Kadanoff, L. P.; Baym, G., Quantum Statistical Mechanics (1962), Perseus Books: Perseus Books New York · Zbl 0115.22901
[622] Kadomtsev, B. B., Turbulent Flows (1965), Academic Press: Academic Press N.Y
[623] Kadomtsev, B. B.; Pogutse, O. P., Nonlinear helical perturbations of a plasma in the tokamak, Sov. Phys. JETP, 5, 575 (1973)
[624] Kaneda, Y., Renormalized expansions in the theory of turbulence with the use of the Lagrangian position function, J. Fluid Mech., 107, 131 (1981) · Zbl 0469.76040
[625] Kaneda, Y., Inertial range structure of turbulent velocity and scalar fields in a Lagrangian renormalized approximation, Phys. Fluids, 29, 701 (1986) · Zbl 0593.76064
[626] Kaneda, Y., Inertial range of two \(-\) dimensional turbulence in a Lagrangian renormalized approximation, Phys. Fluids, 30, 2672 (1987) · Zbl 0634.76060
[627] Kaneda, Y., Lagrangian and Eulerian time correlations in turbulence, Phys. Fluids A, 5, 2835 (1993) · Zbl 0790.76040
[628] Kaneda, Y., Lagrangian renormalized approximation of turbulence, Fluid Dyn. Res., 39, 526 (2007) · Zbl 1136.76025
[629] Kaneda, Y.; Gotoh, T., Lagrangian velocity autocorrelation in isotropic turbulence, Phys. Fluids A, 3, 1924 (1991) · Zbl 0745.76025
[630] Kaneda, Y.; Holloway, G., Frequency shifts of Rossby waves in Geostrophic Turbulence, J. Phys. Soc. Japan, 63, 2974 (1994)
[631] Kaneda, Y.; Ishihara, T.; Gotoh, T., Taylor expansions in powers of time of Lagrangian and Eulerian two-point two-time velocity correlations in turbulence, Phys. Fluids, 11, 2154 (1999) · Zbl 1147.76427
[632] Kaneda, Y.; Ishihara, T.; Yokokawa, M.; Itakura, K. I.; Uno, A., Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box, Phys. Fluids, 15, L21 (2003) · Zbl 1185.76191
[633] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889 (1986) · Zbl 1101.82329
[634] Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; Tatineni, M.; Majumdar, A.; Loring, B.; Geveci, B., The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas, Phys. Plasmas, 21, Article 062308 pp. (2014)
[635] Kármám, T.; Howarth, L., On the statistical theory of isotropic turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 164, 192 (1938) · JFM 64.1453.03
[636] Katul, G. G.; Banerjee, T.; Cava, D.; Germano, M.; Porporato, A., Generalized logarithmic scaling for high-order moments of the longitudinal velocity component explained by the random sweeping decorrelation hypothesis, Phys. Fluids, 28, Article 095104 pp. (2016)
[637] Katul, G. G.; Manes, C.; Porporato, A.; Chamecki, E.; Porporato, M., Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the von Kármán-Howarth equation, Phys. Rev. E, 92, Article 033009 pp. (2015)
[638] Katul, G. G.; Parlange, M.; Albertson, J.; Chu, C. R., The random sweeping decorrelation hypothesis in stratified turbulent flows, Fluid Dyn. Res., 16, 275 (1995)
[639] Kay, J. E.; L’Ecuyer, T., Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century, J. Geophys. Res. Atmos., 118, 7219 (2013)
[640] Kays, W. M.; Crawford, M. E., Convective Heat and Mass Transfer (1993), McGraw Hill: McGraw Hill New York
[641] Kazantsev, A. P., Enhancement of a magnetic field by a conducting fluid, Sov. Phys.—JETP, 26, 1031 (1968)
[642] Kazantsev, E.; Sommeria, J.; Verron, J., Subgrid-scale eddy parameterization by statistical mechanics in a barotropic ocean model, J. Phys. Oceanogr., 28, 1017 (1998)
[643] Keldysh, L. V., Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz., 47, 1018 (1964)
[644] Kelvin, Lord, Hydrokinetic solutions and observations, Phil. Mag., 42, 362 (1871)
[645] Kerr, R. M., Histograms of helicity and strain in numerical turbulence, Phys. Rev. Lett., 59, 783 (1987)
[646] Khlifi, A.; Salhi, A.; Nasraoui, S.; Godeferd, F.; Cambon, C., Spectral energy scaling in precessing turbulence, Phys. Rev. E, 98 (2018), 011102(R)
[647] Khurshid, S.; Donzis, D. A.; Sreenivasan, K. R., Energy spectrum in the dissipation range, Phys. Rev. Fluids, 3 (2018), 082601(R)
[648] Kida, S.; Goto, S., A Lagrangian direct-interaction approximation for homogeneous isotropic turbulence, J. Fluid Mech., 345, 307 (1997) · Zbl 0893.76032
[649] Kida, S.; Kraichnan, R. H.; Rogallo, R. S.; Waleffe, F.; Zhou, Y., Triad interactions in the dissipation range, (Proc. Summer Program 1992, Center for Turbulence Research (1992), Stanford University)
[650] Kida, S.; Orszag, S. A., Energy and spectral dynamics in forced compressible turbulence, J. Sci. Comput., 5, 85 (1990) · Zbl 0721.76041
[651] Kilic, A., Artificial intelligence and machine learning in cardiovascular health care, Ann. Thorac. Surg., 109, 1323 (2020)
[652] Kim, H.; Kim, J.; Won, S.; Lee, C., Unsupervised deep learning for super-resolution reconstruction of turbulence, J. Fluid Mech., 910, A29 (2021) · Zbl 1461.76308
[653] Kimura, Y.; Kraichnan, R. H., Statistics of an advected passive scalar, Phys. Fluids A, 5, 2264 (1993) · Zbl 0782.76044
[654] Kitsios, V.; Frederiksen, J. S., Subgrid parameterizations of the eddy-eddy, eddy-mean field, eddy-topographic, mean field-mean field, and mean field-topographic interactions in atmospheric models, J. Atmos. Sci., 76, 457 (2019)
[655] Kitsios, V.; Frederiksen, J. S.; Zidikheri, M. J., Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models, Nonlinear Processes Geophys., 23, 95 (2016)
[656] Kiyani, K.; McComb, W. D., Time-ordered fluctuation-dissipation relation for incompressible isotropic turbulence, Phys. Rev. E, 70, Article 066303 pp. (2004)
[657] Kleeorin, N.; Rogachevskii, I.; Soustova, I. A.; Troitskaya, Y. I.; Ermakova, O. S.; Zilitinkevich, S., Internal gravity waves in the energy and flux budget turbulence-closure theory for shear-free stably stratified flows, Phys. Rev. E, 99, Article 063106 pp. (2019)
[658] Klein, P.; Lapeyre, G.; Siegelman, L.; Qiu, B.; Fu, L.-L.; Torres, H.; Su, Z.; Menemenlis, D.; Le Gentil, S., Ocean-scale interactions from space, Earth Space Sci., 6, 795 (2019)
[659] Klimontovich, Y. L., The Statistical Theory of Non-Equilibrium Processes in a Plasma (1967), Pergamon: Pergamon Oxford, UK
[660] Kloss, T.; Canet, L.; Delamotte, B.; Wschebor, N., Kardar-Parisi-Zhang equation with spatially correlated noise: A unified picture from nonperturbative renormalization group, Phys. Rev. E, 89, Article 022108 pp. (2014)
[661] Kloss, T.; Canet, L.; Wschebor, N., Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: Scaling functions and amplitude ratios in 1+ 1, 2+ 1, and 3+ 1 dimensions, Phys. Rev. E, 86, Article 051124 pp. (2012)
[662] Kloss, T.; Canet, L.; Wschebor, N., Strong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation, Phys. Rev. E, 90, Article 062133 pp. (2014)
[663] Knaepen, B.; Moin, P., Large-eddy simulation of conductive flows at low magnetic Reynolds number, Phys. Fluids, 16, 1255 (2004) · Zbl 1186.76287
[664] Knaepen, B.; Moreau, R., Magnetohydrodynamic turbulence at low magnetic Reynolds number, Annu. Rev. Fluid Mech., 40, 25 (2008) · Zbl 1229.76108
[665] Kolmogorov, A. N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 299 (1941) · JFM 67.0850.06
[666] Kolmogorov, A. N., Logarithmically normal distribution of the size of particles under fragmentation, Dokl. Akad. Nauk SSSR, 31, 99 (1941)
[667] Kolmogorov, A. N., On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid, Dokl. Akad. Nauk SSSR, 31, 538 (1941) · Zbl 0026.17001
[668] Kolmogorov, A. N., Dissipation of energy in the locally isotropic turbulence, Dokl. Akad. Nauk SSSR, 32, 19 (1941) · Zbl 0063.03292
[669] Kolmogorov, A. N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech., 13, 82 (1962) · Zbl 0112.42003
[670] Kolmogorov, A. N., Mathematics and Mechanics, 534 (1985), Nauka: Nauka Moscow, (in Russian)
[671] Kolokolov, I. V.; Ogorodnikov, L. L.; Vergeles, S. S., Structure of coherent columnar vortices in three-dimensional rotating turbulent flow, Phys. Rev. Fluids, 5, Article 034604 pp. (2020)
[672] Kovasznay, L. S.G., Spectrum of locally isotropic turbulence, J. Aeronaut. Sci., 15, 745 (1948) · Zbl 0034.27004
[673] Kraichnan, R. H., The scattering of sound in a turbulent medium, J. Acoust. Soc. Am., 25, 1096 (1953)
[674] Kraichnan, R. H., Relation of fourth-order to second-order moments in stationery isotropic turbulence, Phys. Rev., 107, 1485 (1957) · Zbl 0078.17801
[675] Kraichnan, R. H., Irreversible statistical mechanics of incompressible hydromagnetic turbulence, Phys. Rev., 109, 1407 (1958)
[676] Kraichnan, R. H., The structure of isotropic turbulence at very high Reynolds numbers, J. Fluid Mech., 5, 497 (1959) · Zbl 0093.41202
[677] Kraichnan, R. H., Comments on space-time correlations in stationary isotropic turbulence, Phys. Fluids, 2, 334 (1959)
[678] Kraichnan, R. H., Classical fluctuation-relaxation theorem, Phys. Rev., 113, 1181 (1959)
[679] Kraichnan, R. H., Dynamics of nonlinear stochastic systems, J. Math. Phys., 2, 124 (1961) · Zbl 0268.76038
[680] Kraichnan, R. H., Decay of isotropic turbulence in the direct-interaction approximation, Phys. Fluids, 7, 1030 (1964)
[681] Kraichnan, R. H., Approximations for steady-state isotropic turbulence, Phys. Fluids, 7, 1163 (1964) · Zbl 0133.21302
[682] Kraichnan, R. H., Kolmogorov’s hypotheses and Eulerian turbulence theory, Phys. Fluids, 7, 1723 (1964) · Zbl 0151.41701
[683] Kraichnan, R. H., Lagrangian-history closure approximation for turbulence, Phys. Fluids, 8, 575 (1965), 9 (1966) 1884 (erratum)
[684] Kraichnan, R. H., Preliminary calculation of the Kolmogorov turbulence spectrum, Phys. Fluids, 8, 995 (1965)
[685] Kraichnan, R. H., Inertial-range spectrum of hydromagnetic turbulence, Phys. Fluids, 8, 1385 (1965)
[686] Kraichnan, R. H., (Pai, S. I., Dynamics of Fluids and Plasma (1966), Academic Press: Academic Press New York) · Zbl 0147.46004
[687] Kraichnan, R. H., Isotropic turbulence and inertial-range structure, Phys. Fluids, 9, 1728 (1966) · Zbl 0147.46004
[688] Kraichnan, R. H., Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417 (1967)
[689] Kraichnan, R. H., Lagrangian-history statistical theory for Burgers’ equation, Phys. Fluids, 11, 265 (1968) · Zbl 0153.57502
[690] Kraichnan, R. H., Small \(-\) scale structure of a scalar field convected by turbulence, Phys. Fluids, 11, 945 (1968) · Zbl 0164.28904
[691] Kraichnan, R. H., Convergents to turbulence functions, J. Fluid Mech., 41, 189 (1970) · Zbl 0198.59503
[692] Kraichnan, R. H., Turbulent diffusion: Evaluation of primitive and renormalized perturbation series by Padé approximants and Stieltjes transforms into contributions from continuous orthogonal functions, (Baker, G.; Gammel, J., The Padé Approximant in Theoretical Physics (1970), Academic Press: Academic Press New York)
[693] Kraichnan, R. H., An almost-Markovian Galilean-invariant turbulence model, J. Fluid Mech., 47, 513 (1971) · Zbl 0219.76064
[694] Kraichnan, R. H., Inertial-range transfer in two-and three-dimensional turbulence, J. Fluid Mech., 47, 525 (1971) · Zbl 0224.76053
[695] Kraichnan, R. H., Test-field model for inhomogeneous turbulence, J. Fluid Mech., 56, 287 (1972) · Zbl 0294.76041
[696] Kraichnan, R. H., Helical turbulence and absolute equilibrium, J. Fluid Mech., 59, 745 (1973) · Zbl 0272.76030
[697] Kraichnan, R. H., Statistical dynamics of two-dimensional flow, J. Fluid Mech., 67, 155 (1975) · Zbl 0297.76042
[698] Kraichnan, R. H., Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33, 1521 (1976)
[699] Kraichnan, R. H., Eulerian and Lagrangian renormalization in turbulence theory, J. Fluid Mech., 83, 349 (1977) · Zbl 0369.76053
[700] Kraichnan, R. H., Hydrodynamic turbulence and the renormalization group, Phys. Rev. A, 25, 3281 (1982)
[701] Kraichnan, R. H., Decimated amplitude equations in turbulence dynamics, (Dwoyer, D. L.; Hussaini, M. Y.; Voigt, R. G., Theoretical Approaches To Turbulence (1985), Springer: Springer New York)
[702] Kraichnan, R. H., Eddy viscosity and diffusivity: Exact formulas and approximations, Complex Syst., 1, 805 (1987) · Zbl 0652.76037
[703] Kraichnan, R. H., An interpretation of the Yakhot-Orszag turbulence theory, Phys. Fluids, 30, 2400 (1987) · Zbl 0642.76069
[704] Kraichnan, R. H., Some progress in statistical turbulence theory, (Branover, H.; Mond, M.; Unger, Y., Current Trends in Turbulence Research (1988), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Washington DC)
[705] Kraichnan, R. H., Reduced descriptions of hydrodynamic turbulence, J. Stat. Phys., 51, 949 (1988) · Zbl 1086.76517
[706] Kraichnan, R. H., Models of intermittency in hydrodynamic turbulence, Phys. Rev. Lett., 65, 575 (1990) · Zbl 1050.76546
[707] Kraichnan, R. H., Stochastic modeling of isotropic turbulence, (Sirovich, L., New Perspectives in Turbulence (1991), Springer: Springer New York)
[708] Kraichnan, R. H., Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett., 72, 1016 (1994)
[709] Kraichnan, R. H.; Chen, S., Is there a statistical mechanics of turbulence?, Physica D, 37, 160 (1989) · Zbl 0687.76049
[710] Kraichnan, R. H.; Herring, J. R., A strain-based Lagrangian-history turbulence theory, J. Fluid Mech., 88, 355 (1978) · Zbl 0407.76030
[711] Kraichnan, R. H.; Montgomery, D., Two-dimensional turbulence, Rep. Progr. Phys., 43, 547 (1980)
[712] Kraichnan, R. H.; Nagarajan, S., Growth of turbulent magnetic fields, Phys. Fluids, 10, 859 (1967) · Zbl 0166.22901
[713] Kraichnan, R. H.; Panda, R., Depression of nonlinearity in decaying isotropic turbulence, Phys. Fluids, 31, 2395 (1988) · Zbl 0649.76026
[714] Kraichnan, R. H.; Spiegel, D., Model for energy transfer in isotropic turbulence, Phys. Fluids, 5, 583 (1962)
[715] Krommes, J. A., Systematic statistical theories of plasma turbulence and intermittency: Current status and future prospects, Phys. Rep., 283, 5 (1997)
[716] Krommes, J. A., Recent results on analytical plasma turbulence theory: Realizability, intermittency, submarginal turbulence and self-organized criticality, Plasma Phys. Control. Fus., 41, A641 (1999)
[717] Krommes, J. A., Fundamental statistical descriptions of plasma turbulence in magnetic fields, Phys. Rep., 360, 1 (2002)
[718] Krommes, J. A., The gyrokinetic description of microturbulence in magnetized plasmas, Annu. Rev. Fluid Mech., 44, 175 (2012) · Zbl 1354.76231
[719] Krommes, J. A., A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev’s Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock, J. Plasma Phys., 81, 175 (2015)
[720] Krommes, J. A.; Kleva, R. G., Aspects of a renormalized weak plasma turbulence theory, Phys. Fluids, 22, 2168 (1979) · Zbl 0414.76088
[721] Krommes, J. A.; Parker, J. B., Statistical closures and zonal flows, (Galperin, B.; Read, P., Zonal Jets (2019), Cambridge University Press: Cambridge University Press Cambridge, UK)
[722] Kűchler, C.; Bewley, G.; Bodenschatz, E., Experimental study of the bottleneck in fully developed turbulence, J. Stat. Phys., 175, 617 (2019) · Zbl 1416.76006
[723] Kűchler, C.; Bewley, G.; Bodenschatz, E., Universality in decaying turbulence at high Reynolds numbers (2021), arXiv preprint arXiv:2106.01795
[724] Kűchler, C.; Bodenschatz, E.; Bewley, G., Scaling in decaying turbulence at high Reynolds numbers (2020), arXiv preprint arXiv:2006.10993
[725] Kurien, S.; Aivalis, K. G.; Sreenivasan, K. R., Anisotropy of small-scale scalar turbulence, J. Fluid Mech., 448, 279 (2001) · Zbl 0992.76041
[726] Kurien, S.; Smith, L.; Wingate, B., On the two-point correlation of potential vorticity in rotating and stratified turbulence, J. Fluid Mech., 555, 131 (2006) · Zbl 1090.76035
[727] Kurien, S.; Sreenivasan, K. R., Anisotropic scaling contributions to high-order structure functions in high- Reynolds-number turbulence, Phys. Rev. E, 62, 2206 (2000)
[728] Kurien, S.; Sreenivasan, K. R., Measures of anisotropy and the universal properties of turbulence, (Lesieur, M.; Yaglom, A.; David, F., New Trends in Turbulence Turbulence: Nouveaux Aspects (2001), Springer: Springer Berlin, Heidelberg) · Zbl 1309.76098
[729] Kurien, S.; Taylor, M. A.; Matsumoto, T., Cascade time scales for energy and helicity in homogeneous isotropic turbulence, Phys. Rev. E, 69, Article 066313 pp. (2004)
[730] Kurien, S.; Wingate, B.; Taylor, M. A., Anisotropic constraints on energy distribution in rotating and stratified turbulence, Europhys. Lett., 84, 24003 (2008)
[731] Ladd, T. D.; Jelezko, R.; Laflamme, Y.; Nakamura, C.; Monroe, F.; O’Brien, J. L., Quantum computers, Nature, 464, 45 (2010)
[732] Lamb, H., Hydrodynamics (1932), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K · JFM 26.0868.02
[733] Landau, L. D.; Lifshitz, E. M., Continuum Mechanics Gostekhizdat (1954)
[734] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1959), Pergamon Press: Pergamon Press London
[735] Langford, J. A.; Moser, R. D., Optimal large-eddy simulation results for isotropic turbulence, J. Fluid Mech., 521, 273 (2004) · Zbl 1065.76117
[736] Lanotte, A.; Mazzino, A., Anisotropic nonperturbative zero modes for passively advected magnetic fields, Phys. Rev. E, 60, R3483 (1999)
[737] Larchevêque, M., Pressure fluctuations and Lagrangian accelerations in two-dimensional incompressible isotropic turbulence, Eur. J. Mech. B Fluids, 9, 109 (1990) · Zbl 0697.76069
[738] Launder, B. E., First steps in modelling turbulence and its origins: A commentary on Reynolds (1895) ‘on the dynamical theory of incompressible viscous fluids and the determination of the criterion’, Phil. Trans. R. Soc. A, 373, Article 20140231 pp. (2015) · Zbl 1353.76001
[739] Launder, B. E.; Reece, G. J.; Rodi, W., Progress in the development of a Reynolds-stress turbulence closure, J. Fluid Mech., 68, 537 (1975) · Zbl 0301.76030
[740] Laval, J. P.; Chavanis, P. H.; Sire, C., Scaling laws and vortex profiles in 2D decaying turbulence, Phys. Rev. E, 63 (2001), 065301(R)
[741] Laval, J. P.; Dubrulle, B.; McWilliams, J. C., Langevin models of turbulence: Renormalization group, distant interaction algorithms or rapid distortion theory?, Phys. Fluids, 15, 1327 (2003) · Zbl 1186.76310
[742] Le Dimet, F. X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects, Tellus, 38A, 97 (1986)
[743] Le Reun, T.; Favier, B.; Le Bars, M., Inertial wave turbulence driven by elliptical instability, Phys. Rev. Lett., 119, Article 034502 pp. (2017)
[744] Leamon, R. J.; Smith, N. F.; Ness, W. H.; Matthaeus, C. W.; Wong, H. K., Observational constraints on the dynamics of the interplanetary magnetic field dissipation range, J. Geophys. Res. Space Phys., 103, 4775 (1998)
[745] Lee, E.; Brachet, A.; Pouquet, P. D.; Mininni, M. E.; Rosenberg, D., Lack of universality in decaying magnetohydrodynamic turbulence, Phys. Rev. E, 81, Article 016318 pp. (2010)
[746] Lee, S. H.; Williams, P. D.; Frame, T. H., Increased shear in the North Atlantic upper-level jet stream over the past four decades, Nature, 572, 639 (2019)
[747] Lee, T. D., Note on the coefficient of eddy viscosity in isotropic turbulence, Phys. Rev., 77, 842 (1950) · Zbl 0037.27606
[748] Lee, T. D., Difference between turbulence in a two-dimensional fluid and in a three-dimensional fluid, J. Appl. Phys., 22, 524 (1951) · Zbl 0042.43305
[749] Lee, T. D., On some statistical properties of hydrodynamical and magneto-hydrodynamical fields, Quart. Appl. Math., 10, 69 (1952) · Zbl 0047.19601
[750] Legras, B., Turbulent phase shift of rossby waves, Geophys. Astrophys. Fluid Dyn., 15, 253 (1980) · Zbl 0455.76015
[751] Leith, C. E., Diffusion approximation for two-dimensional turbulence, Phys. Fluids, 11, 671 (1968)
[752] Leith, C. E., Atmospheric predictability and two-dimensional turbulence, J. Atmos. Sci., 28, 145 (1971) · Zbl 0233.76109
[753] Leith, C. E., Climate response and fluctuation dissipation, J. Atmos. Sci., 32, 2022 (1975)
[754] Leith, C. E., Objective methods for weather prediction, Annu. Rev. Fluid Mech., 10, 107 (1978) · Zbl 0434.76003
[755] Leith, C. E., Minimum enstrophy vortices, Phys. Fluids, 27, 1388 (1984) · Zbl 0572.76046
[756] Leith, C. E., Stochastic backscatter in a subgrid-scale model: Plane shear mixing layer, Phys. Fluids A, 2, 297 (1990)
[757] Leith, C. E., Stochastic models of chaotic systems, Physica D, 98, 481 (1996) · Zbl 0900.86017
[758] Leith, C. E.; Kraichnan, R. H., Predictability of turbulent flows, J. Atmos. Sci., 29, 1041 (1972)
[759] Leonard, A., Energy cascade in large-eddy simulations of turbulent fluid flows, Adv. Geophys., 18, 237 (1975)
[760] Léorat, J.; Pouquet, A.; Frisch, U., Fully developed MHD turbulence near critical magnetic Reynolds number, J. Fluid Mech., 104, 419 (1981) · Zbl 0451.76089
[761] Leprovost, N.; Dubrulle, B.; Chavanis, P. H., Thermodynamics of MHD flows with axial symmetry, Phys. Rev. E, 71, Article 036311 pp. (2005)
[762] Leprovost, N.; Dubrulle, B.; Chavanis, P. H., Dynamics and thermodynamics of axisymmetric flows: Theory, Phys. Rev. E, 73, Article 046308 pp. (2006)
[763] Lesieur, M., Turbulence in Fluids: Stochastic and Numerical Modelling (1987), Martinus Nijhoff, Dordrecht: Martinus Nijhoff, Dordrecht The Netherlands · Zbl 0627.76001
[764] Lesieur, M.; Herring, J. R., Diffusion of a passive scalar in two-dimensional turbulence, J. Fluid Mech., 161, 77 (1985) · Zbl 0592.76071
[765] Lesieur, M.; Métais, O., New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech., 28, 45 (1996)
[766] Lesieur, M.; Ossia, S., 3D isotropic turbulence at very high Reynolds numbers: EDQNM study, J. Turbul., 1, N7 (2000) · Zbl 1078.76550
[767] Lesieur, M.; Ossia, S.; Metais, O., Infrared pressure spectra in two-and three-dimensional isotropic incompressible turbulence, Phys. Fluids, 11, 1535 (1999) · Zbl 1147.76442
[768] Lesieur, M.; Rogallo, R. S., Large eddy simulation of passive scalar diffusion in isotropic turbulence, Phys. Fluids A, 1, 718 (1989)
[769] Lesieur, M.; Schertzer, D., Amortissement auto-similaire d’une turbulencea grand nombre de Reynolds, J. Mécanique, 17, 609 (1978) · Zbl 0395.76047
[770] Leslie, D. C., Developments in the Theory of Turbulence (1973), Clarendon Press: Clarendon Press Oxford, U.K. · Zbl 0273.76034
[771] Leslie, D. C.; Quarini, G. L., The application of turbulence theory to the formulation of subgrid modelling procedures, J. Fluid Mech., 91, 65 (1979) · Zbl 0411.76045
[772] Li, D.; Salesky, S. T.; Banerjee, T., Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers, J. Fluid Mech., 797, R3 (2016) · Zbl 1422.86014
[773] Li, H.; Gary, S. P.; Stawicki, O., On the dissipation of magnetic fluctuations in the solar wind, Geophys. Res. Lett., 28, 1347 (2001)
[774] Li, T.; Wan, M.; Chen, S., Flow structures and kinetic-potential exchange in forced rotating stratified turbulence, Phys. Rev. Fluids, 5, Article 014802 pp. (2020)
[775] Lighthill, M. J., On sound generated aerodynamically I. General theory, Proc. Roy. Soc. Lond. A, 211, 564 (1952) · Zbl 0049.25905
[776] Lilley, G. M., The radiated noise from isotropic turbulence, Theoret. Comput. Fluid Dyn., 6, 281 (1994) · Zbl 0821.76071
[777] Lilly, D. K., Numerical simulation studies of two-dimensional turbulence: I. Models of statistically steady turbulence, Geophys. Astrophys. Fluid Dyn., 3, 289 (1972)
[778] Lilly, D. K., Numerical simulation studies of two-dimensional turbulence: II. Stability and predictability studies, Geophys. Astrophys. Fluid Dyn., 4, 1 (1972)
[779] Lilly, D. K., Stratified turbulence and the mesoscale variability of the atmosphere, J. Atmos. Sci., 40, 749 (1983)
[780] Lin, C. C., Aspects of the problem of turbulent motion, J. Aeronautical Sci., 23, 453 (1956) · Zbl 0071.20001
[781] Lin, Y., Triadic resonances driven by thermal convection in a rotating sphere, J. Fluid Mech., 909, R3 (2021) · Zbl 1461.76523
[782] Lindborg, E., The energy cascade in a strongly stratified fluid, J. Fluid Mech., 550, 207 (2006) · Zbl 1097.76039
[783] Linden, P. (Editor), Celebrating George K. Batchelor’s centenary, J. Fluid Mech., 914 (2021) · Zbl 1458.01030
[784] Ling, J.; Jones, R.; Templeton, J., Machine learning strategies for systems with invariance properties, J. Comput. Phys., 318, 155 (2016) · Zbl 1349.76124
[785] Ling, J.; Kurzawski, A.; Templeton, J., Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807, 155 (2016) · Zbl 1383.76175
[786] Ling, J.; Templeton, J., Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier stokes uncertainty, Phys. Fluids, 27, Article 085103 pp. (2015)
[787] Liou, K. N., An Introduction To Atmospheric Radiation (2002), Academic Press: Academic Press New York
[788] Liu, B.; Tang, J.; Lu, X., Deep learning methods for super-resolution reconstruction of turbulent flows, Phys. Fluids, 32, Article 025105 pp. (2020)
[789] Liu, J.; Liang, J. C.; McWilliams, P. P.; Sullivan, Y.; Fan, J. H.; Chen, Q., Effect of planetary rotation on oceanic surface boundary layer turbulence, J. Phys. Oceanogr., 48, 2057 (2018)
[790] Liu, J.P., Kolden, H.Ø., Krovi, H.K., Loureiro, N.F., Trivisa, K., Childs, A.M., 2020a. Efficient quantum algorithm for dissipative nonlinear differential equations. arXiv preprint arXiv:2011.03185.
[791] Liu, Y.; Arunachalam, S.; Temme, K., A rigorous and robust quantum speed-up in supervised machine learning, Nat. Phys. (2021)
[792] Livescu, D., Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability, Phil. Trans. R. Soc. A, 371, Article 20120185 pp. (2013) · Zbl 1353.76028
[793] Lloyd, S., Quantum machine learning for data classification, Phys., 14, 79 (2021)
[794] Lloyd, S., De Palma, G., Gokler, C., Kiani, B., Liu, Z.W., Marvian, M., Tennie, F., Palmer, T., Quantum algorithm for nonlinear differential equations. arXiv preprint arXiv:2011.06571, 2020.
[795] Lohse, D.; Grossmann, S., Intermittency in turbulence, Physica A, 6, 611 (1993)
[796] Loitsianski, L. G., Some basic laws for isotropic turbulent flow, Trudy Tsentr. Aero.-Gidrodyn., 3, 33 (1939)
[797] Lombardini, M.; Hill, D. J.; Meiron, D. I., Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations, J. Fluid Mech., 670, 439 (1989) · Zbl 1225.76183
[798] Lorenz, E. N., The predictability of a flow which possesses many scales of motion, Tellus, 21, 289 (1969)
[799] Lugones, R.; Dmitruk, P. D.; Mininni, M.; Wan, P.; Matthaeus, W. H., On the spatio-temporal behavior of magnetohydrodynamic turbulence in a magnetized plasma, Phys. Plasmas, 23, Article 112304 pp. (2016)
[800] Lumley, J. L., Similarity and the turbulent energy spectrum, Phys. Fluids, 10, 855 (1967)
[801] Lumley, J. L., Toward a turbulent constitutive relation, J. Fluid Mech., 41, 413 (1970)
[802] Lumley, J. L., Some comments on turbulence, Phys. Fluids A, 4, 203 (1992) · Zbl 0825.76365
[803] Lundgren, T. S., Strained spiral vortex model for turbulent fine structure, Phys. Fluids, 25, 2193 (1982) · Zbl 0536.76034
[804] Lundgren, T. S.; Pointin, Y. B., Statistical mechanics of two-dimensional vortices, J. Stat. Phys., 17, 323 (1977)
[805] Luo, Q. Y.; Wu, D. J., Observations of anisotropic scaling of solar wind turbulence, Astrophys. J. Lett., 714, L138 (2010)
[806] Luque, B.; Ballesteros, F. J., To the sun and beyond, Nat. Phys., 15, 1302 (2019)
[807] L’vov, V., Scale invariant-theory of fully-developed hydrodynamic turbulence - Hamiltonian approach, Phys. Rep., 207, 1 (1991)
[808] L’vov, V.; Podivilov, E.; Procaccia, I., Invariants for correlations of velocity differences in turbulent fields, Phys. Rev. E, 55, 2050 (1997)
[809] L’vov, V.; Podivilov, E.; Procaccia, I., Invariants for correlations of velocity differences in turbulent fields, Phys. Rev. Lett., 79, 2050 (1997)
[810] L’vov, V.; Pomyalov, A., Theory of energy spectra in superfluid \({}^4He\) counterow turbulence, Phys. Rev. B, 97, Article 214513 pp. (2018)
[811] L’vov, V.; Pomyalov, A.; Procaccia, I., Quasi-Gaussian statistics of hydrodynamic turbulence in \(3 / 4 + ɛ\) dimensions, Phys. Rev. Lett., 89, Article 064501 pp. (2002)
[812] L’vov, V.; Procaccia, I., Exact resummations in the theory of hydrodynamic turbulence: Part 0. Line-resummed diagrammatic perturbation approach, (David, F.; Ginsparg, P., Notes of the Les Houches 1994 Summer School, 1995 (1995), North-Holland: North-Holland Amsterdam, The Netherland)
[813] L’vov, V.; Procaccia, I., Exact resummations in the theory of hydrodynamic turbulence: Part 1. The ball of locality and normal scaling, Phys. Rev. E, 52, 3840 (1995)
[814] L’vov, V.; Procaccia, I., Exact resummations in the theory of hydrodynamic turbulence: Part 2. A ladder to anomalous scaling, Phys. Rev. E, 52, 3858 (1995)
[815] L’vov, V.; Procaccia, I., Exact resummations in the theory of hydrodynamic turbulence: Part 3. Scenarios for anomalous scaling and intermittency, Phys. Rev. E, 53, 3468 (1996)
[816] L’vov, V.; Procaccia, I., Fusion rules in turbulent systems with flux equilibrium, Phys. Rev. Lett., 76, 2898 (1996)
[817] L’vov, V.; Procaccia, I., Viscous lengths in hydrodynamic turbulence are anomalous scaling functions, Phys. Rev. Lett., 77, 3541 (1996)
[818] L’vov, V.; Procaccia, I., Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions, Phys. Rev. E, 54, 6268 (1996)
[819] L’vov, V.; Procaccia, I., The universal scaling exponents of anisotropy in turbulence and their measurement, Phys. Fluids, 8, 2565 (1996) · Zbl 1027.76576
[820] L’vov, V.; Procaccia, I., Computing the scaling exponents in fluid turbulence from first principles: The formal setup, Physica A, 257, 165 (1998)
[821] L’vov, V.; Procaccia, I., Analytic calculation of the anomalous exponents in turbulence: Using the fusion rules to flush out a small parameter, Phys. Rev. E, 62, 8037 (2000)
[822] L’vov, V. S.; Procaccia, I.; Tiberkevich, V., Scaling exponents in anisotropic hydrodynamic turbulence, Phys. Rev. E, 67, Article 026312 pp. (2003)
[823] Lynden-Bell, D., Statistical mechanics of violent relaxation in stellar systems, Mon. Not. R. Astron. Soc., 136, 101 (1967)
[824] Maack, J.; Turkington, B., Reduced models of point vortex systems, Entropy, 20, 914 (2018)
[825] MacArt, J. F.; Sirignano, J.; Freund, J. B., Embedded training of neural-network subgrid-scale turbulence models, Phys. Rev. Fluids, 6, Article 050502 pp. (2021)
[826] Mackay, D. H.; Karpen, J. L.; Ballester, B.; Schmieder, J. T.; Aulanier, G., Physics of solar prominences: II-magnetic structure and dynamics, Space Sci. Rev., 151, 333 (2010)
[827] Maity, P.; Govindarajan, R.; Ray, S. S., Statistics of Lagrangian trajectories in a rotating turbulent flow, Phys. Rev. E, 100, Article 043110 pp. (2019)
[828] Majda, A. J.; Kramer, P. R., Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Phys. Rep., 314, 237 (1999)
[829] Majda, A. J.; Wang, X., Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K · Zbl 1141.86001
[830] Malik, N. A.; Vassilicos, J. C., Eulerian and Lagrangian scaling properties of randomly advected vortex tubes, J. Fluid Mech., 326, 417 (1996) · Zbl 0896.76010
[831] Mallet, A.; Schekochihin, A. A.; Chandran, B. D., Refined critical balance in strong Alfvénic turbulence, Mon. Not. R. Astron. Soc., 449, L77 (2015)
[832] Manin, Y., Computable and Uncomputable (1980), Sovetskoye Radio: Sovetskoye Radio Moscow · Zbl 0471.03003
[833] Marcus, P. S., Jupiter’s great red spot and other vortices, Annu. Rev. Astron. Astrophys., 31, 523 (1993)
[834] Marcus, P. S.; Kundu, T.; Lee, C., Vortex dynamics and zonal flows, Phys. Plasmas, 7, 1630 (2000)
[835] Maron, J.; Goldreich, P., Simulations of incompressible magnetohydrodynamic turbulence, Astrophys. J., 554, 1175 (2001)
[836] Marston, J. B., Planetary atmospheres as nonequilibrium condensed matter, Annu. Rev. Condens. Matter Phys., 3, 285 (2012)
[837] Martin, P. C.; Siggia, E. D.; Rose, H. A., Statistical dynamics of classical systems, Phys. Rev. A, 8, 423 (1973)
[838] Martinez, D. O.; Chen, G.; Doolen, R. H.; Kraichnan, L. P.; Wang, S.; Zhou, Y., Energy spectrum in the dissipation range of fluid turbulence, J. Plasma Phys., 57, 195 (1997)
[839] Martyushev, L. M.; Seleznev, V. D., Maximum entropy production principle in physics, chemistry and biology, Phys. Rep., 426, 1 (2006)
[840] Mason, R. M.; Kerswell, R. R., Chaotic dynamics in a strained rotating flow: A precessing plane fluid layer, J. Fluid Mech., 471, 71 (2002) · Zbl 1026.76058
[841] Matai, R.; Durbin, P. A., Zonal eddy viscosity models based on machine learning flow, Turbul. Combust., 103, 93 (2019)
[842] Mater, B. D.; Schaad, S. M.; Venayagamoorthy, S. K., Relevance of the Thorpe length scale in stably stratified turbulence, Phys. Fluids, 25, Article 076604 pp. (2013)
[843] Mathelin, L.; Bataille, F.; Zhou, Y., Theoretical investigation of some thermal effects in turbulence modeling, Theor. Comput. Fluid Dyn., 22, 471 (2008) · Zbl 1161.76491
[844] Matthaeus, W. H., Turbulence in space plasmas: Who needs it?, Phys. Plasmas, 28, Article 032306 pp. (2021)
[845] Matthaeus, W. H.; Goldstein, M. L., Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind, J. Geophys. Res. Space Phys., 87, 6011 (1982)
[846] Matthaeus, W. H.; Montgomery, D., Selective decay hypothesis at high mechanical and magnetic Reynolds numbers, Ann. N.Y. Acad. Sci., 357, 203 (1980) · Zbl 0513.76047
[847] Matthaeus, W. H.; Oughton, S.; Zhou, Y., Anisotropic magnetohydrodynamic spectral transfer in the diffusion approximation, Phys. Rev. E, 79, Article 035410 pp. (2009)
[848] Matthaeus, W. H.; Weygand, P.; Chuychai, R. J.; Dasso, C. W.; Smith, J. M.; Kivelson, M. G., Interplanetary magnetic Taylor microscale and implications for plasma dissipation, Astrophys. J., 678, L141 (2008)
[849] Matthaeus, W. H.; Weygand, J. M.; Dasso, S., Ensemble space-time correlation of plasma turbulence in the solar wind, Phys. Rev. Lett., 116, Article 245101 pp. (2016)
[850] Matthaeus, W. H.; Zhou, Y., Extended inertial range phenomenology of magnetohydrodynamic turbulence, Phys. Fluids B, 1, 1929 (1989)
[851] Matthews, D., How to get started in quantum computing, Nature, 591, 166 (2021)
[852] Maulik, R.; San, O.; Vedula, P., Data-driven deconvolution for large eddy simulations of Kraichnan turbulence, Phys. Fluids, 30, Article 125109 pp. (2018)
[853] Maulik, R.; San, O.; Vedula, P., Subgrid modelling for two-dimensional turbulence using neural networks, J. Fluid Mech., 858, 122 (2019) · Zbl 1415.76405
[854] Maulik, R.; San, O.; Crick, C., Sub-grid scale model classification and blending through deep learning, J. Fluid Mech., 870, 784 (2019) · Zbl 1419.76370
[855] Mauri, R., Transport Phenomena in Multiphase Flows (2015), Springer: Springer Cham, Switzerland · Zbl 1320.76002
[856] Mazzino, A.; Muratore-Ginanneschi, P., Passive scalar turbulence in high dimensions, Phys. Rev. E, 63 (2000), 015302(R)
[857] Mazzitelli, I.; Lanotte, A. S., Active and passive scalar intermittent statistics in turbulent atmospheric convection, Physica D, 241, 251 (2012)
[858] McComb, W. D., A local energy-transfer theory of isotropic turbulence, J. Phys. A, 7, 632 (1974) · Zbl 0284.76039
[859] McComb, W. D., The Physics of Fluid Turbulence (1990), Clarendon Press: Clarendon Press Oxford, U.K · Zbl 0748.76005
[860] McComb, W. D., Theory of turbulence, Rep. Prog. Phys., 58, 1117 (1995)
[861] McComb, W. D.; Hunter, A.; Johnston, C., Conditional mode-elimination and the subgrid-modeling problem for isotropic turbulence, Phys. Fluids, 13, 2030 (2001) · Zbl 1184.76356
[862] McComb, W. D.; Quinn, A. P., Two-point, two-time closures applied to forced isotropic turbulence, Physica A, 317, 487 (2003) · Zbl 1005.76030
[863] McComb, W. D.; Yoffe, S. R., A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence, J. Phys. A, 50, Article 375501 pp. (2017) · Zbl 1372.76056
[864] McKeon, B. J., The engine behind (wall) turbulence: Perspectives on scale interactions, J. Fluid Mech., 817, P1 (2017) · Zbl 1383.76239
[865] McWilliams, J. C., The emergence of isolated coherent vortices in turbulent flow, J. Fluid Mech., 146, 21 (1984) · Zbl 0561.76059
[866] McWilliams, J. C., The vortices of two dimensional turbulence, J. Fluid Mech., 219, 361 (1990)
[867] McWilliams, J. C.; Weiss, J. B.; Yavneh, I., The vortices of homogeneous geostrophic turbulence, J. Fluid Mech., 401, 1 (1999) · Zbl 0972.76042
[868] Mehta, P.; Bukov, C. H.; Wang, A. G.R.; Day, C.; Richardson, C. K.; Fisher, M.; Schwab, D. J., A high-bias, low-variance introduction to machine learning for physicists, Phys. Rep., 810, 1 (2019)
[869] Mejía-Monasterio, C.; Muratore-Ginanneschi, P., Nonperturbative renormalization group study of the stochastic Navier-Stokes equation, Phys. Rev. E, 86, Article 016315 pp. (2012)
[870] Melander, M.; Zabusky, N. J.; McWilliams, J. C., Symmetric vortex merger in two dimensions: Causes and conditions, J. Fluid Mech., 195, 303 (1988) · Zbl 0653.76020
[871] Meldi, M., The signature of initial production mechanisms in isotropic turbulence decay, Phys. Fluids, 28, Article 035105 pp. (2016)
[872] Meldi, M.; Lucor, D.; Sagaut, P., Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum?, Phys. Fluids, 23, Article 125109 pp. (2011)
[873] Meldi, M.; Sagaut, P., On non-self-similar regimes in homogeneous isotropic turbulence decay, J. Fluid Mech., 711, 364 (2012) · Zbl 1275.76121
[874] Meldi, M.; Sagaut, P., Further insights into self-similarity and self-preservation in freely decaying isotropic turbulence, J. Turbul., 14, 24 (2013)
[875] Meldi, M.; Sagaut, P., Turbulence in a box: Quantification of large-scale resolution effects in isotropic turbulence free decay, J. Fluid Mech., 818, 697 (2017) · Zbl 1383.76182
[876] Meldi, M.; Sagaut, P., Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence, J. Turbul., 19, 390 (2018)
[877] Meldi, M.; Sagaut, P.; Lucor, D., A stochastic view of isotropic turbulence decay, J. Fluid Mech., 668, 351 (2011) · Zbl 1225.76169
[878] Melet, A.; Legg, S.; Hallberg, R., Climatic impacts of parameterized local and remote tidal mixing, J. Clim., 29, 3473 (2016)
[879] Meneveau, C., Transition between viscous and inertial-range scaling of turbulence structure functions, Phys. Rev. E, 54, 3657 (1996)
[880] Meneveau, C.; Katz, J., Scale-invariance and turbulence models for large-eddy simulation, Annu. Rev. Fluid Mech., 32, 1 (2000) · Zbl 0988.76044
[881] Meneveau, C.; Sreenivasan, K. R., Simple multifractal cascade model for fully developed turbulence, Phys. Rev. Lett., 59, 1424 (1987)
[882] Meneveau, C.; Sreenivasan, K. R., The multifractal spectrum of the dissipation field in turbulent flows, Nucl. Phys. B Proc. Suppl., 2, 49 (1987)
[883] Meneveau, C.; Sreenivasan, K. R., The multifractal nature of turbulent energy dissipation, J. Fluid Mech., 224, 429 (1991) · Zbl 0717.76061
[884] Meneveau, C.; Sreenivasan, K. R.; Fan, M. S., Joint multifractal measures: Theory and applications to turbulence, Phys. Rev. A, 41, 894 (1990)
[885] Menkyna, M., Influence of compressibility on scaling regimes of Kraichnan model with nite time correlations: Two-loop RG analysis, Eur. Phys. J. B, 93, 71 (2020) · Zbl 1516.82035
[886] Meshkov, E. E., Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4, 101 (1969)
[887] Métais, O.; Lesieur, M., Statistical predictability of decaying turbulence, J. Atmos. Sci., 43, 857 (1986)
[888] Métais, O.; Lesieur, M., Spectral large-eddy simulation of isotropic and stably stratified turbulence, J. Fluid Mech., 239, 157 (1992) · Zbl 0825.76272
[889] Meuel, T.; Coudert, P.; Fischer, C. H.; Bruneau, M.; Kellay, H., Effects of rotation on temperature fluctuations in turbulent thermal convection on a hemisphere, Sci. Rep., 8, 1 (2018)
[890] Meyers, J.; Meneveau, C., A functional form for the energy spectrum parametrizing bottleneck and intermittency effects, Phys. Fluids, 20, Article 065109 pp. (2008) · Zbl 1182.76513
[891] Michel, J.; Robert, R., Statistical mechanical theory of the great red spot of Jupiter, J. Stat. Phys., 77, 645 (1994) · Zbl 0843.76091
[892] Miesch, M.; Matthaeus, W.; Brandenburg, A.; Petrosyan, A.; Pouquet, A.; Cambon, C.; Jenko, F.; Uzdensky, D.; Stone, J.; Tobias, S.; Toomre, J., Large-eddy simulations of magnetohydrodynamic turbulence in heliophysics and astrophysics, Space Sci. Rev., 194, 97 (2015)
[893] Miller, J., Statistical mechanics of Euler equations in two dimensions, Phys. Rev. Lett., 65, 2137 (1990) · Zbl 1050.82553
[894] Miller, J.; Weichman, P. B.; Cross, M. C., Statistical mechanics, Euler’s equation, and Jupiter’s red spot, Phys. Rev. A, 45, 2328 (1992)
[895] Millionshtchikov, Y., On the theory of homogeneous isotropic turbulence, C.R. Acad. Sci. U.R.S.S, 32, 615 (1941) · Zbl 0063.03985
[896] Millionshtchikov, Y., On the role of the third moments in isotropic turbulence, C.R. Acad. Sci. U.R.S.S, 32, 619 (1941) · Zbl 0063.03986
[897] Min, I. A.; Mezic, I.; Leonard, A., Levy stable distributions for velocity and velocity difference in systems of vortex elements, Phys. Fluids, 8, 1169 (1996) · Zbl 1086.76029
[898] Mininni, P. D.; Alexakis, A.; Pouquet, A., Large-scale flow effects, energy transfer, and self-similarity on turbulence, Phys. Rev. E, 74, Article 016303 pp. (2006)
[899] Mininni, P. D.; Alexakis, A.; Pouquet, A., Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws, Phys. Rev. E, 77, Article 036306 pp. (2008)
[900] Mininni, P. D.; Alexakis, A.; Pouquet, A., Scale interactions and scaling laws in rotating flows at moderate Rossby numbers and large Reynolds numbers, Phys. Fluids, 21, Article 015108 pp. (2009) · Zbl 1183.76356
[901] Mishra, A. A.; Iaccarino, G., Theoretical analysis of tensor perturbations for uncertainty quantification of Reynolds averaged and subgrid scale closures, Phys. Fluids, 31, Article 075101 pp. (2019)
[902] Modin, K.; Viviani, M., A casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics, J. Fluid Mech., 884, A22 (2020) · Zbl 1460.76182
[903] Moffatt, H. K., Magnetic Field Generation in Electrically Conducting Fluids (1978), Cambridge University Press: Cambridge University Press Cambridge, U.K
[904] Moffatt, H. K., Turbulence and Chaotic Phenomena in Fluids (1984), North-Holland: North-Holland Amsterdam · Zbl 0581.76003
[905] Moffatt, H. K., G.K. Batchelor and the homogenization of turbulence, Annu. Rev. Fluid Mech., 34, 19 (2002) · Zbl 1047.76501
[906] Moffatt, H. K., George Batchelor: A personal tribute, ten years on, J. Fluid Mech., 663, 2 (2010) · Zbl 1205.01038
[907] Moffatt, H. K., Helicity-invariant even in a viscous fluid, Science, 357, 448 (2017)
[908] Moffatt, H. K.; Tsinober, A., Helicity in laminar and turbulent flow, Annu. Rev. Fluid Mech., 24, 281 (1992) · Zbl 0751.76018
[909] Mogilner, A.; Manhart, A., Intracellular fluid mechanics: Coupling cytoplasmic flow with active cytoskeletal gel, Annu. Rev. Fluid Mech., 50, 347 (2018) · Zbl 1384.76063
[910] Mohamed, M. S.; LaRue, J. C., The decay power law in grid-generated turbulence, J. Fluid Mech., 219, 195 (1990)
[911] Moin, P.; Mahesh, K., Direct numerical simulation: A tool in turbulence research, Annu. Rev. Fluid Mech., 30, 539 (1998) · Zbl 1398.76073
[912] Molemaker, M. J.; McWilliams, J. C., Local balance and cross-scale flux of available potential energy, J. Fluid Mech., 645, 295 (2010) · Zbl 1189.76161
[913] Monchaux, R.; Chavanis, A.; Chiffaudel, P. P.; Cortet, F.; Daviaud, P.; Diribarne, P. H.; Dubrulle, B., Fluctuation-Dissipation Relations and statistical temperatures in a turbulent von Kármán flow, Phys. Rev. Lett., 101, Article 174502 pp. (2008)
[914] Monchaux, R.; Ravelet, B.; Dubrulle, A.; Chiffaudel, F.; Daviaud, F., Properties of steady states in turbulent axisymmetric flows, Phys. Rev. Lett., 96, Article 124502 pp. (2006)
[915] Monin, A. S.; Yaglom, A. M., Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1 (1971), MIT Press: MIT Press Cambridge, Massachusetts
[916] Monin, A. S.; Yaglom, A. M., Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (1975), MIT Press: MIT Press Cambridge, Massachusetts
[917] Mons, V.; Cambon, C.; Sagaut, P., A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically-averaged descriptors, J. Fluid Mech., 788, 147 (2016) · Zbl 1338.76033
[918] Mons, V.; Chassaing, J. C.; Sagaut, P., Is isotropic turbulence decay governed by asymptotic behavior of large scales? An eddy-damped quasi-normal Markovian-based data assimilation study, Phys. Fluids, 26, Article 115105 pp. (2014)
[919] Mons, V.; Meldi, M.; Sagaut, P., Numerical investigation on the partial return to isotropy of freely decaying homogeneous axisymmetric turbulence, Phys. Fluids, 26, Article 025110 pp. (2014)
[920] Mons, V.; Meldi, M.; Sagaut, P., A spectral model for homogeneous shear-driven anisotropic turbulence in terms of spherically-averaged descriptors, J. Fluid Mech., 788, 147 (2016) · Zbl 1338.76033
[921] Montgomery, D., Implications of Navier-Stokes turbulence theory for plasma turbulence, Proc. Indian Acad. Sci. A, 8, 87 (1977)
[922] Montgomery, D.; Turner, L., Two-and-a-half-dimensional magnetohydrodynamic turbulence, Phys. Fluids, 25, 345 (1982) · Zbl 0485.76099
[923] Mori, H., Transport, collective motion, and Brownian motion, Progr. Theoret. Phys., 33, 423 (1965) · Zbl 0127.45002
[924] Morize, C.; Moisy, F.; Rabaud, M., Decaying grid-generated turbulence in a rotating tank, Phys. Fluids, 17, Article 095105 pp. (2005) · Zbl 1187.76367
[925] Morss, R. E.; Snyder, C.; Rotunno, R., Spectra, spatial scales, and predictability in a quasigeostrophic model, J. Atmos. Sci., 66, 3115 (2009)
[926] Moser, R. D.; Haering, S. W.; Yalla, G. R., Statistical properties of subgrid-scale turbulence models, Annu. Rev. Fluid Mech., 53, 255 (2021) · Zbl 1459.76067
[927] Mou, C. Y.; Weichman, P. B., Multicomponent turbulence, the spherical limit, and non-Kolmogorov spectra, Phys. Rev. E, 52, 3738 (1995)
[928] Mueck, L., Quantum reform, Nat. Chem., 7, 361 (2015)
[929] Müller, W. C.; Carati, D., Dynamic gradient-diffusion subgrid models for incompressible magnetohydrodynamic turbulence, Phys. Plasmas, 9, 824 (2002)
[930] Müller, W. C.; Grappin, R., Spectral energy dynamics in magnetohydrodynamic turbulence, Phys. Rev. Lett., 95, Article 114502 pp. (2005)
[931] Müller, W. C.; Thiele, M., Scaling and energy transfer in rotating turbulence, Europhys. Lett., 77, 34003 (2007)
[932] Mullin, T., Experimental studies of transition to turbulence in a pipe, Annu. Rev. Fluid Mech., 43, 1 (2011) · Zbl 1210.76005
[933] Musacchio, S.; Boffetta, G., Condensate in quasi-two-dimensional turbulence, Phys. Rev. Fluids, 4, Article 022602 pp. (2019)
[934] Mydlarski, L.; Warhaft, Z., Passive scalar statistics in high Péclet number grid turbulence, J. Fluid Mech., 358, 135 (1998)
[935] Nadiga, B. T., Orientation of eddy fluxes in geostrophic turbulence, Philos. Trans. R. Soc. A, 366, 2489 (2008) · Zbl 1153.86306
[936] Nakano, T., Direct interaction approximation of turbulence in the wave packet representation, Phys. Fluids, 31, 1420 (1988) · Zbl 0643.76065
[937] Nakayama, K., Statistical theory of anisotropic magnetohydrodynamic turbulence: An approach to strong shear Alfvén turbulence by direct-interaction approximation, Astrophys. J., 523, 315 (1999)
[938] Nakayama, K., Statistical theory of anisotropic magnetohydrodynamic turbulence. II. Lagrangian theory of strong shear Alfvén turbulence, Astrophys. J., 556, 1027 (2001)
[939] Nakayama, K., Lagrangian statistical theory of anisotropic MHD turbulence, Publ. Astron. Soc. Jpn, 54, 1065 (2002)
[940] Naso, A.; Chavanis, P. H.; Dubrulle, B., Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states, Eur. Phys. J. B, 77, 187 (2010) · Zbl 1515.82138
[941] Naso, A.; Chavanis, P. H.; Dubrulle, B., Statistical mechanics of Fofonoff flows in an oceanic basin, Eur. Phys. J. B, 80, 493 (2011)
[942] Naso, A.; Monchaux, R.; Dubrulle, B., Statistical mechanics of Beltrami flows in axisymmetric geometry: Theory reexamined, Phys. Rev. E, 81, Article 066318 pp. (2010)
[943] Naso, A.; Thalabard, G.; Collette, P. H.; Chavanis, S.; Dubrulle, B., Statistical mechanics of beltrami flows in axisymmetric geometry: Equilibria and bifurcations, J. Stat. Mech., Article P06019 pp. (2010)
[944] Nastrom, G. D.; Gage, K. S., A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft, J. Atmos. Sci., 42, 950 (1985)
[945] Nastrom, G. D.; Gage, K. S.; Jasperson, W. H., Kinetic energy spectrum of large-and mesoscale atmospheric processes, Nature, 310, 36 (1984)
[946] Navier, C. L.M. H., Memoire sur les lois du mouvement des fluides, Mem. Acad. Sci. Inst. France, 6, 389 (1822)
[947] Nazarenko, S., Wave Turbulence (2011), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1220.76006
[948] Nelkin, M., Turbulence, critical fluctuations, and intermittency, Phys. Rev. A, 9, 388 (1974)
[949] Nelkin, M., Scaling theory of hydrodynamic turbulence, Phys. Rev. A, 11, 1737 (1975)
[950] Nelkin, M., Universality and scaling in fully developed turbulence, Adv. Phys., 43, 143 (1994)
[951] Nelkin, M.; Tabor, M., Time correlations and random sweeping in isotropic turbulence, Phys. Fluids A, 2, 81 (1990) · Zbl 0696.76065
[952] Newman, G. R.; Herring, J. R., A test field model study of a passive scalar in isotropic turbulence, J. Fluid Mech., 94, 163 (1979)
[953] Ng, C. S.; Bhattacharjee, A., Scaling of anisotropic spectra due to the weak interaction of shear-Alfvén wave packets, Phys. Plasmas, 4, 605 (1997)
[954] Ngan, K.; Bartello, P.; Straub, D. N., Predictability of rotating stratified turbulence, J. Atmos. Sci., 66, 1384 (2009)
[955] Ngan, K.; Eperon, G. E., Middle atmosphere predictability in a numerical weather prediction model: Revisiting the inverse error cascade, Quart. J. Roy. Meteor. Soc., 138, 1366 (2012)
[956] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, UK · Zbl 1049.81015
[957] Nieuwstadt, F. T.M.; Boersma, B. J.; Westerweel, J., Turbulence: Introduction To Theory and Applications of Turbulent Flows (2016), Springer: Springer Cham, Switzerland
[958] Nieuwstadt, F. T.M.; Steketee, J. A., Selected Papers of J. M. Burgers (1995), Kluwer · Zbl 1454.01059
[959] Nisizima, S.; Yoshizawa, A., Turbulent channel and couette flows using an anisotropic \(K - ɛ\) model, AIAA J., 25, 414 (1987) · Zbl 0616.76072
[960] Nycander, J.; Lacasce, J. H., Stable and unstable vortices attached to seamounts, J. Fluid Mech., 507, 71 (2004) · Zbl 1065.76032
[961] Oberlack, M., On the decay exponent of isotropic turbulence, Proc. Appl. Math. Mech., 1, 294 (2002) · Zbl 1419.76244
[962] O’Brien, E. E.; Francis, G. C., A consequence of the zero fourth cumulant approximation, J. Fluid Mech., 13, 369 (1962) · Zbl 0111.39204
[963] Obukhov, A. M., On the distribution of energy in the spectrum of turbulent flow, Doklady Akad. Nauk. S.S.S.R, 32, 22 (1941)
[964] Obukhov, A. M., The structure of the temperature field in a turbulent flow, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz, 13, 58 (1949)
[965] Ogawa, A., Mechanical separation process and flow patterns of cyclone dust collectors, Appl. Mech. Rev., 50, 97 (1997)
[966] O’Gorman, P. A.; Pullin, D. I., On modal time correlations of turbulent velocity and scalar fields, J. Turbul., 5, 035 (2004) · Zbl 1083.76533
[967] O’Gorman, P. A.; Pullin, D. I., Effect of Schmidt number on the velocity-scalar cospectrum in isotropic turbulence with a mean scalar gradient, J. Fluid Mech., 532, 111 (2005) · Zbl 1074.76028
[968] Ogura, Y., Energy transfer in a normally distributed and isotropic turbulent velocity field in two dimensions, Phys. Fluids, 5, 395 (1962) · Zbl 0116.19301
[969] Ogura, Y., A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence, J. Fluid Mech., 16, 33 (1963) · Zbl 0117.20704
[970] Ohkitani, K.; Dowker, M., Numerical study on comparison of Navier-Stokes and Burgers equations, Phys. Fluids, 24, Article 055113 pp. (2012) · Zbl 1309.76161
[971] Ohkitani, K.; Kida, S., Triad interactions in a forced turbulence, Phys. Fluids A, 4, 794 (1992) · Zbl 0748.76064
[972] Ohno, T.; Noda, A. T.; Satoh, M., Impacts of sub-grid ice cloud physics in a turbulence scheme on high clouds and their response to global warming, J. Meteorol. Soc. Jpn, 98, 1069 (2020)
[973] Okamura, M., Closure model for homogeneous isotropic turbulence in the Lagrangian specification of the flow field, J. Fluid Mech., 841, 521 (2018) · Zbl 1419.76245
[974] O’kane, T. J.; Frederiksen, J. S., The QDIA and regularized QDIA closures for inhomogeneous turbulence over topography, J. Fluid Mech., 504, 133 (2004) · Zbl 1116.76369
[975] O’kane, T. J.; Frederiksen, J. S., A comparison of statistical dynamical and ensemble prediction methods during blocking, J. Atmos. Sci., 65, 426 (2008)
[976] Oks, D.; Mininni, P. D.; Pouquet, A., Inverse cascades and resonant triads in rotating and stratified turbulence, Phys. Fluids, 29, Article 111109 pp. (2017)
[977] Onsager, L., The distribution of energy in turbulence, Phys. Rev., 68, 286 (1945), Abstract of communication presented at the Meeting of the Metropolitan Section of the American Physical Society, Columbia University, New York, November (1945) 9-10
[978] Onsager, L., Statistical hydrodynamics, Nuovo Cimento Suppl., 6, 279 (1949)
[979] Orszag, S. A., Analytical theories of turbulence, J. Fluid Mech., 41, 363 (1970) · Zbl 0191.25601
[980] Orszag, S. A., Lectures on the statistical theory of turbulence, (Balian, R.; Peube, J.-L., Fluid Dynamics (1977), Gordon & Breach: Gordon & Breach London, UK) · Zbl 0403.76054
[981] Orszag, S. A.; Kraichnan, R. H., Model equations for strong turbulence in a Vlasov plasma, Phys. Fluids, 10, 1720 (1967) · Zbl 0208.56801
[982] Orszag, S. A.; Patterson Jr, G. S., Numerical simulation of three-dimensional homogeneous isotropic turbulence, Phys. Rev. Lett., 39, 76 (1972)
[983] Ossia, S.; Lesieur, M., Energy backscatter in large-eddy simulations of three-dimensional incompressible isotropic turbulence, J. Turbul., 1, 010 (2000) · Zbl 1078.76554
[984] Ottaviani, M., Direct-interaction approximation: The statistically stationary problem, Phys. Lett. A, 143, 325 (1990)
[985] Oughton, S.; Matthaeus, W. H., Critical balance and the physics of MHD turbulence, Astrophys. J., 897, 37 (2020)
[986] Oughton, S.; Matthaeus, W. H.; Osman, K. T., Anisotropy in solar wind plasma turbulence, Philos. Trans. R. Soc. A, 373, Article 20140152 pp. (2015)
[987] Oughton, S.; Priest, E. R.; Matthaeus, W. H., The influence of a mean magnetic field on three-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 280, 95 (1994) · Zbl 0825.76943
[988] Outeiral, C.; Strahm, J.; Shi, G. M.; Morris, S. C.; Benjamin, M.; Deane, C. M., The prospects of quantum computing in computational molecular biology, Wiley Interdiscip. Rev. Comput. Mol. Sci., 11, Article e1481 pp. (2021)
[989] Overy, R., Russia’s War: A History of the Soviet Effort: 1941-1945 (1998), Penguin Books: Penguin Books New York
[990] Ozmidov, R. V., On the turbulent exchange in a stably stratified ocean, Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 1, 861 (1965)
[991] Pagani, C., Functional renormalization group approach to the Kraichnan model, Phys. Rev. E, 92, Article 033016 pp. (2015)
[992] Pais, A., Subtle Is the Lord: The Science and the Life of Albert Einstein (1982), Oxford Univ. Press: Oxford Univ. Press Oxford, U.K
[993] Pal, N.; Boureima, I.; Kurien, S.; Ramaprabhu, P.; Lawrie, A., Local wave number model for inhomogeneous two-fluid mixing, Phys. Rev. E, 104, Article 025105 pp. (2021)
[994] Pal, N.; Kurien, T. T.; Clark, D.; Aslangil, S.; Livescu, D., Two-point spectral model for variable-density homogeneous turbulence, Phys. Rev. Fluids, 3, Article 124608 pp. (2018)
[995] Palmer, T. N., Stochastic weather and climate models, Nat. Rev. Phys., 1, 463 (2019)
[996] Palmer, T. N.; Doring̈, A.; Seregin, G., The real butterfly effect, Nonlinearity, 27, R123 (2014) · Zbl 1322.34056
[997] Panchev, S., Random Functions and Turbulence (1971), Pergamon: Pergamon Oxford, U.K · Zbl 0257.76051
[998] Pandey, S.; Schumacher, J.; Sreenivasan, K. R., A perspective on machine learning in turbulent flows, J. Turbl., 21, 567 (2020)
[999] Paret, J.; Jullien, M. C.; Tabeling, P., Vorticity statistics in the two-dimensional enstrophy cascade, Phys. Rev. Lett., 83, 3418 (1999)
[1000] Paret, J.; Tabeling, P., Experimental observation of the two-dimensional inverse energy cascade, Phys. Rev. Lett., 79, 4162 (1997)
[1001] Paret, J.; Tabeling, P., Intermittency in the two-dimensional inverse cascade of energy: Experimental observations, Phys. Fluids, 10, 3126 (1998)
[1002] Pawar, S.; San, O., Data assimilation empowered neural network parametrizations for subgrid processes in geophysical flows, Phys. Rev. Fluids, 6, Article 050501 pp. (2021)
[1003] Pearce, J., Robert Kraichnan, physicist who studied turbulence, is dead at 80, New York Times, March, 8, B16 (2008)
[1004] Pedlosky, J., Geophysical Fluid Dynamics (1987), Springer-Verlag · Zbl 0713.76005
[1005] Pelz, R. B.; Yakhot, S. A.; Orszag, L.; Shtilman, V.; Levich, E., Velocity-vorticity patterns in turbulent flow, Phys. Rev. Lett., 54, 2505 (1985)
[1006] Pereira, F. S.; Grinstein, F. F.; Israel, D. M.; Rauenzahn, R.; Girimaji, S. S., Partially-averaged Navier-Stokes closure modeling for variable-density turbulent flow, Phys. Rev. Fluids, 6, Article 084602 pp. (2021)
[1007] Perez, J. C.; Bourouaine, S., Eulerian space-time correlation of strong magnetohydrodynamic turbulence, Phys. Rev. Res., 2, Article 023357 pp. (2020)
[1008] Perez, J.; Bourouaine, S.; Raouafi, N. E., Applicability of Taylor’s hypothesis during Parker Solar Probe perihelia, Astron. Astrophys., 650, A22 (2021)
[1009] Perri, S.; Servidio, S.; Valentini, F., Numerical study on the validity of the Taylor hypothesis in space plasmas, Astrophys. J. Suppl. Ser., 231, 4 (2017)
[1010] Perschke, C.; Narita, Y.; Glassmeier, K. H., Observational test for a random sweeping model in solar wind turbulence, Phys. Rev. Lett., 116, Article 125101 pp. (2016)
[1011] Peskin, M. E.; Schroder, D. V., An Introduction To Quantum Field Theory (1995), Westview Press: Westview Press Boulder, CO
[1012] Pestana, T.; Hickel, S., Rossby-number effects on columnar eddy formation and the energy dissipation law in homogeneous rotating turbulence, J. Fluid Mech., 885, 186 (2020) · Zbl 1460.76360
[1013] Peterson, J. L.; Humbird, J. E.; Field, S. T.; Brandon, S. H.; Langer, R. C.; Nora, B. K.; Spears, K. D.; Springer, P. T., Zonal flow generation in inertial confinement fusion implosions, Phys. Plasmas, 24, Article 032702 pp. (2017)
[1014] Petty, D. J.; Pantano, C., A semi-Lagrangian direct-interaction closure of the spectra of isotropic variable-density turbulence, J. Fluid Mech., 876, 186 (2019) · Zbl 1419.76247
[1015] Phythian, R., The functional formalism of classical statistical dynamics, J. Phys. A, 10, 777 (1977)
[1016] Pitaevskii, L. P., Vortex lines in an imperfect bose gas, Sov. Phys.—JETP, 13, 451 (1961)
[1017] Plimpton, S. J.; Moore, A.; Borner, A. K.; Stagg, T. P.; Koehler, J. R.; Torczynski, S. G.; Gallis, M. A., Direct simulation Monte Carlo on petaflop supercomputers and beyond, Phys. Fluids, 31, Article 086101 pp. (2019)
[1018] Podesta, J. J., Dependence of solar-wind power spectra on the direction of the local mean magnetic field, Astrophys. J., 698, 986 (2009)
[1019] Politano, H.; Pouquet, A., Dynamical length scales for turbulent magnetized flows, Geophys. Res. Lett., 25, 273 (1998)
[1020] Politano, H.; Pouquet, A., von Kàrmàn-Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions, Phys. Rev. E, 57, R21 (1998)
[1021] Pope, S. B., A more general effective-viscosity hypothesis, J. Fluid Mech., 72, 331 (1975) · Zbl 0315.76024
[1022] Pope, S. B., Mapping closures for turbulent mixing and reaction, Theoret. Comput. Fluid Dyn., 2, 255 (1991) · Zbl 0732.76042
[1023] Pope, S. B., Turbulent Flows (2000), Cambridge Univ. Press: Cambridge Univ. Press Cambridge, U.K · Zbl 0966.76002
[1024] Porco, C. C.; West, R. A.; McEwen, A.; Del Genio, A. D.; Ingersoll, A. P.; Thomas, P.; Squyres, S.; Dones, L., Cassini imaging of Jupiter’s atmosphere, satellites, and rings, Science, 299, 1541 (2003)
[1025] Poroseva, S. V.; Colmenares, J. D.; Murman, S. M., On the accuracy of RANS simulations with DNS data, Phys. Fluids, 28, Article 115102 pp. (2016)
[1026] Poroseva, S.; Kaiser, B. E.; Murman, S. M., Validation of a closing procedure for fourth-order RANS turbulence models with DNS data in an incompressible zero-pressure-gradient turbulent boundary layer, Int. J. Heat Fluid Flow, 56, 71 (2015)
[1027] Poulain, C.; Mazellier, N.; Chevillard, L.; Gagne, Y.; Baudet, C., Dynamics of spatial fourier modes in turbulence, Eur. Phys. J. B, 53, 219 (2006)
[1028] Pouquet, A., On two-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 88, 1 (1978) · Zbl 0414.76086
[1029] Pouquet, A., Review of the monograph by Pierre Sagaut and Claude Cambon entitled, Homogeneous Turbulence Dynamics, J. Tubul., 20, 240 (2019)
[1030] Pouquet, A.; Fournier, J. D.; Sulem, P. L., Is helicity relevant for large scale steady state three-dimensional turbulence?, J. Physique, 39, L199 (1978)
[1031] Pouquet, A.; Frisch, U.; Chollet, J. P., Turbulence with a spectral gap, Phys. Fluids, 26, 877 (1983)
[1032] Pouquet, A.; Frisch, U.; Léorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321 (1976) · Zbl 0336.76019
[1033] Pouquet, A.; Rosenberg, D.; Stawarz, J. E.; Marino, R., Helicity dynamics, inverse, and bidirectional cascades in fluid and magnetohydrodynamic turbulence: A brief review, Earth Space Sci., 6, 351 (2019)
[1034] Praskovsky, A. A.; Gledzer, E. B.; Yu. Karyakin, M.; Zhou, Y., The sweeping decorrelation hypothesis and energy-inertial scale interaction in high Reynolds number flows, J. Fluid Mech., 248, 493 (1993) · Zbl 0775.76081
[1035] Praskovsky, A.; Oncley, S., Measurements of the Kolmogorov constant and intermittency exponent at very high Reynolds numbers, Phys. Fluids, 6, 2886 (1994)
[1036] Pressel, K. G.; Kaul, C. M.; Schneider, T.; Tan, Z.; Mishra, S., Large-eddy simulation in an anelastic framework with closed water and entropy balances, J. Adv. Model Earth Syst., 7, 1425 (2015)
[1037] Pressel, K. G.; Kaul, C. M.; Schneider, T.; Tan, Z.; Mishra, S., Numerics and subgrid-scale modeling in large eddy simulations of stratocumulus clouds, J. Adv. Model Earth Syst., 9, 1342 (2017)
[1038] Procaccia, I.; L’vov, V.; Benzi, R., Colloquium: Theory of drag reduction by polymers in wall-bounded turbulence, Rev. Modern Phys., 80, 225 (2008)
[1039] Proudman, I., The generation of noise by isotropic turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 214, 119 (1952) · Zbl 0046.42301
[1040] Proudman, I.; Reid, W. H., On the decay of a normally distributed and homogeneous turbulent velocity, Phil. Trans. A, 247, 163 (1954) · Zbl 0056.19901
[1041] Pullin, D. I.; Saffman, P. G., Vortex dynamics in turbulence, Annu. Rev. Fluid Mech., 30, 31 (1998) · Zbl 1398.76084
[1042] Pumir, A.; Shraiman, B.; Chertkov, M., Geometry of Lagrangian dispersion in turbulence, Phys. Rev. Lett., 85, 5324 (2000)
[1043] Purcell, E. M., Life at low Reynolds number, Amer. J. Phys., 45, 3 (1977)
[1044] Qi, W.; Marston, J. B., Hyperviscosity and statistical equilibria of Euler turbulence on the torus and the sphere, J. Stat. Mech., Article P07020 pp. (2014) · Zbl 1456.76067
[1045] Qian, Y.-H.; Zhou, Y., Complete Galilean-invariant lattice BGK models for the Navier-Stokes equation, Europhys. Lett., 42, 359 (1998)
[1046] Rai, S.; Hecht, M.; Maltrud, M.; Aluie, H., Scale of oceanic eddy killing by wind from global satellite observations, Sci. Adv., 7 (2021), eabf4920
[1047] Rathor, S. K.; Sharma, M. K.; Ray, S. S.; Chakraborty, S., Bridging inertial and dissipation range statistics in rotating turbulence, Phys. Fluids, 32, Article 095104 pp. (2020)
[1048] Rayleigh, Lord, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc., 14, 170 (1883) · JFM 15.0848.02
[1049] Reese, D. T.; Ames, A. M.; Noble, C. D.; Oakley, J. G.; Rothamer, D. A.; Bonazza, R., Simultaneous direct measurements of concentration and velocity in the Richtmyer-Meshkov instability, J. Fluid Mech., 849, 541 (2018) · Zbl 1415.76283
[1050] Renaud, A.; Venaille, A.; Bouchet, F., Equilibrium statistical mechanics and energy partition for the shallow water model, J. Stat. Phys., 163, 784 (2016) · Zbl 1342.82007
[1051] Reshetnyak, M. Y.; Pokhotelov, O. A., Cascade processes in rapid rotation, Solar Syst. Res., 53, 362 (2019)
[1052] Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel channels, Philos. Trans. R. Soc., 174, 935 (1883) · JFM 16.0845.02
[1053] Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philos. Trans. R. Soc., 186, 123 (1895) · JFM 26.0872.02
[1054] Rhines, P. B., Waves and turbulence on a beta-plane, J. Fluid Mech., 69, 417 (1975) · Zbl 0366.76043
[1055] Rhines, P. B., Geostrophic turbulence, Annu. Rev. Fluid Mech., 11, 401 (1979) · Zbl 0474.76054
[1056] Richtmyer, R. D., Taylor instability in a shock acceleration of compressible fluids, Commun. Pure Appl. Maths., 13, 297 (1960)
[1057] Rigon, G.; Albertazzi, B.; Pikuz, T.; Mabey, P.; Bouffetier, V.; Ozaki, N.; Vinci, T.; Barbato, F.; Falize, E.; Inubushi, Y.; Kamimura, N.; Katagiri, K.; Makarov, S.; Manuel, M. J.E.; Miyanishi, K.; Pikuz, S.; Poujade, O.; Sueda, K.; Togashi, T.; Umeda, Y.; Yabashi, M.; Yabuuchi, T.; Gregori, G.; Kodama, R.; Casner, A.; Koenig, M., Micron-scale phenomena observed in a turbulent laser-produced plasma, Nat. Comm., 12, 2679 (2021)
[1058] Robert, R.; Rosier, C., The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach, J. Stat. Phys, 86, 481 (1997) · Zbl 0952.76511
[1059] Robert, R.; Sommeria, J., Statistical equilibrium states for two-dimensional flows, J. Fluid Mech., 229, 291 (1991) · Zbl 0850.76025
[1060] Robert, R.; Sommeria, J., Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics, Phys. Rev. Lett., 69, 2776 (1992) · Zbl 0968.82527
[1061] Roberts, A., Churchill: Walking with Destiny (2018), Viking: Viking New York
[1062] Robinson, G. D., Some current projects for global meteorological observation and experiment, Q. J. R. Meteorol. Soc., 93, 409 (1967)
[1063] Robinson, G. D., The predictability of a dissipative flow, Q. J. R. Meteorol. Soc., 97, 300 (1971)
[1064] Rogachevskii, I.; Kleeorin, N., Intermittency and anomalous scaling for magnetic fluctuations, Phys. Rev. E, 56, 417 (1997)
[1065] Rogallo, R. S.; Moin, P., Numerical simulation of turbulent flows, Annu. Rev. Fluid Mech., 16, 99 (1984) · Zbl 0604.76040
[1066] Rose, H. A., Eddy diffusivity, eddy noise and subgrid-scale modelling, J. Fluid Mech., 81, 719 (1977) · Zbl 0373.76054
[1067] Rose, H. A., An efficient non-Markovian theory of non-equilibrium dynamics, Physica D, 14, 216 (1985) · Zbl 0611.76070
[1068] Rose, H. A.; Sulem, P. L., Fully developed turbulence and statistical mechanics, J. Physique, 39, 441 (1978)
[1069] Rotta, J. C., Statistische theorie nichthomogener turbulenz, Z. Phys., 77, 842 (1951) · Zbl 0042.43304
[1070] Rotunno, R.; Snyder, C., A generalization of Lorenz’s model for the predictability of flows with many scales of motion, J. Atmos. Sci., 65, 1063 (2008)
[1071] Rubinstein, R.; Barton, J. M., Nonlinear Reynolds stress models and the renormalization group, Phys. Fluids A, 2, 1472 (1990) · Zbl 0709.76068
[1072] Rubinstein, R.; Barton, J. M., Renormalization group analysis of anisotropic diffusion in turbulent shear flows, Phys. Fluids A, 3, 415 (1991) · Zbl 0719.76041
[1073] Rubinstein, R.; Clark, T. T., A generalized Heisenberg model for turbulent spectral dynamics, Theor. Comput. Fluid Dyn., 17, 249 (2004) · Zbl 1082.76059
[1074] Rubinstein, R.; Clark, T. T., Self-similar turbulence evolution and the dissipation rate transport equation, Phys. Fluids, 17, Article 095104 pp. (2005) · Zbl 1187.76452
[1075] Rubinstein, R.; Kurien, S.; Cambon, C., Scalar and tensor spherical harmonics expansion of the velocity correlation in homogeneous anisotropic turbulence, J. Turbul., 16, 1058 (2015)
[1076] Rubinstein, R.; Zhou, Y., Analytical theory of the destruction terms in dissipation rate transport equations, Phys. Fluids, 8, 3172 (1996) · Zbl 1027.76586
[1077] Rubinstein, R.; Zhou, Y., Effects of helicity on Lagrangian and Eulerian time correlations in turbulence, Phys. Fluids, 11, 2288 (1999) · Zbl 1147.76486
[1078] Rubinstein, R.; Zhou, Y., The frequency spectrum of sound radiated by isotropic turbulence, Phys. Lett. A, 267, 379 (2000)
[1079] Rubinstein, R.; Zhou, Y., Characterization of sound radiation by unresolved scales of motion in computational aeroacoustics, Eur. J. Mech. B Fluids, 21, 105 (2002) · Zbl 1060.76105
[1080] Rubinstein, R.; Zhou, Y., Constant flux states in anisotropic turbulence, ASME J. Fluids Eng., 136, Article 060914 pp. (2014)
[1081] Rudakov, L. I.; Tsytovich, V. N., Strong langmuir turbulence, Phys. Rep., 40, 1 (1978)
[1082] Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, 333 (1994)
[1083] Saenz, J. A.; Aslangil, D.; Livescu, D., Filtering, averaging, and scale dependency in homogeneous variable density turbulence, Phys. Fluids, 33, Article 025115 pp. (2021)
[1084] Saffman, P. G., The large-scale structure of homogeneous turbulence, J. Fluid Mech., 27, 581 (1967) · Zbl 0148.22403
[1085] Sagaut, P., Large Eddy Simulation for Incompressible Flows: An Introduction (2006), Springer Science & Business Media: Springer Science & Business Media Berlin · Zbl 1091.76001
[1086] Sagaut, P., Multiscale and Multiresolution Approaches in Turbulence: LES, DES and Hybrid RANS/LES Methods: Applications and Guidelines (2013), World Scientific: World Scientific Singapore · Zbl 1275.76004
[1087] Sagaut, P.; Cambon, C., Homogeneous Turbulence Dynamics (2018), Springer, Cham: Springer, Cham Switzerland · Zbl 1418.76003
[1088] Salhi, A.; Cambon, C., Anisotropic phase-mixing in homogeneous turbulence in a rapidly rotating or in a strongly stratified fluid: An analytical study, Phys. Fluids, 19, Article 055102 pp. (2007) · Zbl 1146.76522
[1089] Salmon, R., Geostrophic turbulence, (Osborne, A. R.; Rizzoli, P. Malanotte, Topics in Ocean Physics, Proc. Int. School of Physics, “E. Fermi” (1982), North-Holland: North-Holland Amsterdam)
[1090] Salmon, R., Lectures on Geophysical Fluid Dynamics (1998), Oxford Univ. Press: Oxford Univ. Press Oxford, U.K.
[1091] Salmon, R., Entropy budget and coherent structures associated with a spectral closure model of turbulence, J. Fluid Mech., 857, 806 (2018) · Zbl 1415.76263
[1092] Salmon, R.; Holloway, G.; Hendershott, M. C., The equilibrium statistical mechanics of simple quasi-geostrophic models, J. Fluid Mech., 75, 691 (1976) · Zbl 0342.76015
[1093] Salyk, A. P.; Ingersoll, J.; Lorre, J.; Vasavada, A.; Del Genio, A. D., Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data, Icarus, 185, 430 (2006)
[1094] San, O.; Rasheed, A.; Kvamsdal, T., Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution, GAMM-Mitteilungen, 44 (2021), e202100007 · Zbl 1533.65205
[1095] Santangelo, P.; Benzi, R.; Legras, B., The generation of vortices in high resolution, two-dimensional decaying turbulence, and the influence of initial conditions on the breaking of self-similarity, Phys. Fluids A, 1, 1027 (1989)
[1096] Saric, W. S.; Reed, H. L.; White, E. B., Stability and transition of three-dimensional boundary layers, Annu. Rev. Fluid Mech., 35, 413 (2003) · Zbl 1039.76018
[1097] Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J. Suppl. Ser., 182, 310 (2009)
[1098] Schekochihin, A. A.; Cowley, S. C.; Taylor, S. F.; Maron, J. L.; McWilliams, J. C., Simulations of the small-scale turbulent dynamo, Astrophys. J., 612, 276 (2004)
[1099] Schiermeier, Q., Oceanography: Churn, churn, churn, Nature, 447, 522 (2007)
[1100] Schilling, O., A Two-Point Closure Model of Turbulent Compressible Convection and Application To Stellar Interiors (1994), Columbia University: Columbia University New York, (Ph.D. dissertation)
[1101] Schilling, O.; Zhou, Y., Analysis of spectral eddy viscosity and backscatter in incompressible, isotropic turbulence using statistical closure theory, Phys. Fluids, 14, 1244 (2002)
[1102] Schilling, O.; Zhou, Y., Triadic energy transfers in non-helical magnetohydrodynamic turbulence, J. Plasma Phys., 68, 389 (2002)
[1103] Schmitt, F. G., Turbulence from 1870 to 1920: The birth of a noun and of a concept, Compt. Rend. Mećanique, 345, 620 (2017)
[1104] Schmitt, F.; La Vallee, D.; Lovejoy, S., Empirical determination of universal multifractal exponents in turbulent velocity fields, Phys. Rev. Lett., 68, 305 (1992)
[1105] Schneider, T.; Kaul, C. M.; Pressel, K. G., Climate goals and computing the future of clouds, Nat. Geosci., 12, 163 (2019)
[1106] Schneider, T.; Teixeira, J.; Bretherton, C. S.; Brient, F.; Pressel, K. G.; Schär, C.; Siebesma, A. P., Climate goals and computing the future of clouds, Nat. Clim. Chang., 7, 3 (2017)
[1107] Schoepplein, M.; Weatheritt, J.; Sandberg, R.; Talei, M.; Klein, M., Application of an evolutionary algorithm to LES modelling of turbulent transport in premixed flames, J. Comput. Phys., 374, 1166 (2018) · Zbl 1416.76078
[1108] Scott, J. F., Wave turbulence in a rotating channel, J. Fluid Mech., 741, 316 (2018) · Zbl 1325.76090
[1109] Serra, S.; Toutant, A.; Bataille, F.; Zhou, Y., High-temperature gradient effect on a turbulent channel flow using thermal large-eddy simulation in physical and spectral spaces, J. Turbul., 13, N49 (2012) · Zbl 1273.76218
[1110] Service, R. F., Design for U.S. exascale computer takes shape, Science, 359, 617 (2018)
[1111] Servidio, S.; Carbone, V.; Dmitruk, P.; Matthaeus, W. H., Time decorrelation in isotropic magnetohydrodynamic turbulence, Europhys. Lett., 96, Article 55003 pp. (2011)
[1112] Servidio, S.; Matthaeus, W. H.; Dmitruk, P., Depression of nonlinearity in decaying isotropic MHD turbulence, Phys. Rev. Lett., 100, Article 095005 pp. (2008)
[1113] Seshasayanan, K.; Alexakis, A., Kazantsev model in non-helical 2.5-dimensional flows, J. Fluid Mech., 806, 627 (2016) · Zbl 1383.76552
[1114] Sharma, M. K.; Kumar, A.; Verma, M. K.; Chakraborty, S., Statistical features of rapidly rotating decaying turbulence: Enstrophy and energy spectra and coherent structures, Phys. Fluids, 30, Article 045103 pp. (2018)
[1115] Sharma, M. K.; Verma, M. K.; Chakraborty, S., On the energy spectrum of rapidly rotating forced turbulence, Phys. Fluids, 30, Article 115102 pp. (2018)
[1116] Shats, M. G.; Xia, H.; Punzmann, H.; Falkovich, G., Suppression of turbulence by self-generated and imposed mean flows, Phys. Rev. Lett., 99, Article 164502 pp. (2007)
[1117] She, Z.-S.; Leveque, E., Universal scaling laws in fully developed turbulence, Phys. Rev. Lett., 72, 336 (1994)
[1118] Shebalin, J. V.; Matthaeus, W. H.; Montgomery, D., Anisotropy in mhd turbulence due to a mean magnetic field, J. Plasma Phys., 29, 525 (1983)
[1119] Shet, C. S.; Cholemari, M. R.; Veeravalli, S. V., Eulerian spatial and temporal autocorrelations: Assessment of Taylor’s hypothesis and a model, J. Turbul., 18, 1105 (2017)
[1120] Shi, Y.; Xiao, Z.; Chen, S., Constrained subgrid-scale stress model for large eddy simulation, Phys. Fluids, 20, Article 011701 pp. (2008) · Zbl 1182.76693
[1121] Shimomura, Y.; Yoshizawa, A., Statistical analysis of anisotropic turbulent viscosity in a rotating system, J. Phys. Soc. Japan, 55, 1904 (1986)
[1122] Shraiman, B. I.; Siggia, E. D., Scalar turbulence, Nature, 405, 639 (2000)
[1123] Shtilman, L.; Polifke, W., On the mechanism of the reduction of nonlinearity in the incompressible Navier-Stokes equation, Phys. Fluids A, 1, 778 (1989)
[1124] Siggia, E. D.; Aref, H., Point-vortex simulation of the inverse energy cascade in two-dimensional turbulence, Phys. Fluids, 24, 171 (1981)
[1125] Singh, A. P.; Medida, S.; Duraisamy, K., Machine-learning-augmented predictive modeling of turbulent separated fows over airfoils, AIAA J., 55, 2215 (2017)
[1126] Sinhuber, M.; Bewley, G. P.; Bodenschatz, E., Dissipative effects on inertial-range statistics at high Reynolds numbers, Phys. Rev. Lett., 119, Article 134502 pp. (2017)
[1127] Sire, C.; Chavanis, P.-H., Numerical renormalization group of vortex aggregation in 2D decaying turbulence: The role of three-body interactions, Phys. Rev. E, 61, 6644 (2000)
[1128] Sire, C.; Chavanis, P.-H.; Sopik, J., Effective merging dynamics of two and three fluid vortices: Application to two-dimensional decaying turbulence, Phys. Rev. E, 84, Article 056317 pp. (2011)
[1129] Skrbek, L.; Stalp, S. R., On the decay of homogeneous isotropic turbulence, Phys. Fluids, 12, 1997 (2000) · Zbl 1184.76513
[1130] Smagorinsky, J., General circulation experiments with the primitive equations: I. The basic experiment, Monthly Weather Rev., 91, 99 (1963)
[1131] Smith, C. W.; Hamilton, K.; Vasquez, B. J.; Leamon, R. J., Dependence of the dissipation range spectrum of interplanetary magnetic fluctuationson the rate of energy cascade, Astrophys. J. Lett, 645, L85 (2006)
[1132] Smith, L. M.; Woodruff, S. L., Renormalization-group analysis of turbulence, Annu. Rev. Fluid Mech., 30, 275 (1998) · Zbl 1398.76085
[1133] Smyth, W. D.; Carpenter, J. R., Instability in Geophysical Flows (2019), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1427.76077
[1134] Sorgentone, C., Energy, enstrophy and symmetry preserving schemes for the numerical integration of non-linear advective problems (2015), Sapienza Universita Di Roma: Sapienza Universita Di Roma Italy, (Ph.D. dissertation)
[1135] Soulard, O.; Gréa, B. J., Influence of zero-modes on the inertial-range anisotropy of Rayleigh-Taylor and unstably stratified homogeneous turbulence, Phys. Rev. Fluids, 2, Article 074603 pp. (2017)
[1136] Soulard, O.; Griffond, J.; Gréa, B. J., Large-scale analysis of self-similar unstably stratified homogeneous turbulence, Phys. Fluids, 26 (2014), 015110
[1137] Soulard, O.; Griffond, J.; Gréa, B. J.; Viciconte, G., Permanence of large eddies in decaying variable-density homogeneous turbulence with small mach numbers, Phys. Rev. Fluids, 5, Article 064613 pp. (2020)
[1138] Soulard, O.; Guillois, F.; Griffond, J.; Sabelnikov, V.; Simoëns, S., Permanence of large eddies in Richtmyer-Meshkov turbulence with a small atwood number, Phys. Rev. Fluids, 3, Article 104603 pp. (2018)
[1139] Speziale, C. G., Galilean Invariance of subgrid-scale stress models in the large-eddy simulation of turbulence, J. Fluid Mech., 156, 55 (1985) · Zbl 0586.76099
[1140] Speziale, C. G., On nonlinear \(K - L\) and \(K - ɛ\) models of turbulence, J. Fluid Mech., 178, 459 (1987) · Zbl 0634.76064
[1141] Speziale, C. G., Analytical methods for the development of Reynolds-stress closures in turbulence, Annu. Rev. Fluid Mech., 23, 107 (1991) · Zbl 0723.76005
[1142] Sreenivasan, K. R., On the scaling of the turbulence energy dissipation rate, Phys. Fluids, 27, 1048 (1984)
[1143] Sreenivasan, K. R., On local isotropy of passive scalars in turbulent shear flows, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 434, 165 (1991) · Zbl 0726.76050
[1144] Sreenivasan, K. R., On the universality of the Kolmogorov constant, Phys. Fluids, 7, 2778 (1995) · Zbl 1027.76611
[1145] Sreenivasan, K. R., An update on the energy dissipation rate in isotropic turbulence, Phys. Fluids, 10, 528 (1998) · Zbl 1185.76674
[1146] Sreenivasan, K. R., Fluid turbulence, Rev. Modern Phys., 71, S383 (1999)
[1147] Sreenivasan, K. R., Chandrasekhar’s fluid dynamics, Annu. Rev. Fluid Mech., 51, 1 (2019) · Zbl 1412.76003
[1148] Sreenivasan, K. R., Turbulent mixing: A perspective, Proc. Natl. Acad. Sci., 116, 18175 (2019) · Zbl 1431.76057
[1149] Sreenivasan, K. R.; Antonia, R. A., The phenomenology of small-scale turbulence, Annu. Rev. Fluid Mech., 29, 435 (1997)
[1150] Sreenivasan, K. R.; Schumacher, J., Lagrangian Views on turbulent mixing of passive scalars, Phil. Trans. R. Soc. A, 368 (2010) · Zbl 1192.76021
[1151] Sridhar, S.; Goldreich, P., Toward a theory of interstellar turbulence. I: Weak Alfvénic turbulence, Astrophys. J., 432, 612 (1994)
[1152] Staicu, A.; van de Water, W., Small scale velocity jumps in shear turbulence, Phys. Rev. Lett., 90, Article 094501 pp. (2003)
[1153] Stein, P., Siqueiros: His Life and Works (1994), International Publishers: International Publishers New York
[1154] Steinkamp, M. J.; Clark, T. T.; Harlow, F. H., Two-point description of two-fluid turbulent mixing. I. Model formulation, Int. J. Multiph. Flow., 25, 599 (1999) · Zbl 1137.76748
[1155] Steinkamp, M. J.; Clark, T. T.; Harlow, F. H., Two-point description of two-fluid turbulent mixing. II. Numerical solutions and comparisons with experiments, Int. J. Multiph. Flow., 25, 639 (1999) · Zbl 1137.76749
[1156] Stocking, J. B.; Laforsch, C.; Sigl, R.; Reidenbach, M. A., The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals, J. R. Soc. Interface, 15, Article 20180448 pp. (2018)
[1157] Stokes, G. G., On the theories of the internal friction of fluids in motion, Trans. Camb. Phil. Soc., 8, 287 (1845)
[1158] Storer, L. N.; Williams, P. D.; Joshi, M. M., Global response of clear-air turbulence to climate change, Geophys. Res. Lett., 44, 9976 (2017)
[1159] Strauss, H. R., Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks, Phys. Fluids, 19, 134 (1976)
[1160] Su, Y.; Li, M.; Yang, Y.; Mann, J.; Liao, H.; Li, X., Experimental investigation of turbulent fluctuation characteristics observed at a moving point under crossflows, J. Wind Eng. Ind. Aerodyn., 197, Article 104079 pp. (2020)
[1161] Sudan, R. N.; Pfirsch, D., On the relation between “mixing length” and “direct interaction approximation” theories of turbulence, Phys. Fluids, 28, 1702 (1985) · Zbl 0644.76069
[1162] Sukoriansky, S.; Galperin, B., An analytical theory of the buoyancy-Kolmogorov subrange transition in turbulent flows with stable stratification, Philos. Trans. R. Soc. A, 371 (2013), 20120212 · Zbl 1353.76026
[1163] Sukoriansky, S.; Galperin, B., QNSE theory of turbulence anisotropization and onset of the inverse energy cascade by solid body rotation, J. Fluid Mech., 805, 384 (2016)
[1164] Sukoriansky, S.; Galperin, B.; Staroselsky, I., Cross-term and \(\varepsilon \)-expansion in RNG theory of turbulence, Fluid Dyn. Res., 33, 319 (2003) · Zbl 1032.76569
[1165] Sukoriansky, S.; Galperin, B.; Staroselsky, I., A quasinormal scale elimination model of turbulent flows with stable stratification, Phys. Fluids, 17, Article 085107 pp. (2005) · Zbl 1187.76507
[1166] Sukoriansky, S.; Kit, E.; Zemach, E.; Midya, S.; Fernando, H. J.S., Inertial range skewness of the longitudinal velocity derivative in locally isotropic turbulence, Phys. Rev. Fluids, 3, Article 114605 pp. (2018)
[1167] Sukoriansky, S.; Zemach, E., Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number, Phys. Scr., 91, Article 034001 pp. (2016)
[1168] Sulem, P. L.; Fournier, J. D.; Pouquet, A., Fully developed turbulence and renormalization group, (Enz, C. P., Dynamical Critical Phenomena and Related Topics (1979), Springer: Springer Berlin, Heidelberg)
[1169] Tabeling, P., Two-dimensional turbulence: A physicist approach, Phys. Rep., 362, 1 (2002) · Zbl 1001.76041
[1170] Tarpin, M.; Canet, L.; Pagani, C.; Wschebor, N., Stationary, isotropic and homogeneous two-dimensional turbulence: A first non-perturbative renormalization group approach, J. Phys. A, 52, Article 085501 pp. (2019) · Zbl 1505.81063
[1171] Tarpin, M.; Canet, L.; Wschebor, N., Breaking of scale invariance in the time dependence of correlation functions in isotropic and homogeneous turbulence, Phys. Fluids, 30, Article 055102 pp. (2018)
[1172] Tatsumi, T., The theory of decay process of incompressible, isotropic turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 239, 16 (1957) · Zbl 0077.19504
[1173] Taylor, G. I., Statistical theory of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 151, 421 (1935) · JFM 61.0926.02
[1174] Taylor, G. I., Production and dissipation of vorticity in a turbulent fluid, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 164, 15 (1938) · JFM 64.1453.04
[1175] Taylor, G. I., The spectrum of turbulence, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 164, 476 (1938) · JFM 64.1454.02
[1176] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 201, 192 (1950) · Zbl 0038.12201
[1177] Taylor, G. I., The interaction between experiment and theory in fluid mechanics, Annu. Rev. Fluid Mech., 6, 1 (1974) · Zbl 0292.76002
[1178] Taylor, G. I.; Green, A. E., Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 158, 499 (1937) · JFM 63.1358.03
[1179] Taylor, M. A.; Kurien, S.; Eyink, G. L., Recovering isotropic statistics in turbulence simulations: The Kolmogorov 4/5th law, Phys. Rev. E, 68, Article 026310 pp. (2003)
[1180] Teaca, B.; Carati, D.; Domaradzki, J. A., On the locality of magnetohydrodynamic turbulence scale fluxes, Phys. Plasmas, 18, Article 112307 pp. (2011)
[1181] Telloni, D.; Carbone, F.; Bruno, R.; Sorriso-Valvo, L.; Zank, G. P.; Adhikari, L.; Hunana, P., No evidence for critical balance in field-aligned Alfvénic solar wind turbulence, Astrophys. J., 887, 160 (2019)
[1182] Tennekes, H., Eulerian and Lagrangian time microscales in isotropic turbulence, J. Fluid Mech., 67, 561 (1975) · Zbl 0302.76033
[1183] Tennekes, H.; Lumley, J. L., A First Course in Turbulence (1972), The MIT Press: The MIT Press Cambridge, MA · Zbl 0285.76018
[1184] Teodorovich, E. V., Renormalization description of turbulence, Izv. - Atmos. Ocean. Phys., 29, 135 (1993)
[1185] Teodorovich, E. V., Energy spectrum of turbulent velocity pulsations at arbitrary values of fluid viscosity, J. Mod. Phys., 11, 1502 (2020)
[1186] Terasaki, K.; Tanaka, H.; Zagar, N., Energy spectra of Rossby and gravity waves, Sci. Online Lett. Atmos., 7, 045 (2011)
[1187] Terry, P. W., Theory of critical balance in plasma turbulence, Phys. Plasmas, 25, Article 092301 pp. (2018)
[1188] Thalabard, S.; Dubrulle, B.; Bouchet, F., Statistical mechanics of the 3D axisymmetric Euler equations in a Taylor-Couette geometry, J. Stat. Mech. (2014) · Zbl 1456.82025
[1189] Thess, A.; Sommeria, J.; Jüttner, B., Inertial organization of a two-dimensional turbulent vortex street, Phys. Fluids, 6, 2417 (1994) · Zbl 0825.76323
[1190] Thomson, W. (Lord Kelvin), Stability of motion (continued from the May, June and August numbers). Broad rivers flowing down an inclined plane bed, Phil. Mag., 24, 272 (1887)
[1191] Thomson, W. (Lord Kelvin), On the propagation of laminar motion through a turbulently moving inviscid liquid, Phil. Mag., 24, 342 (1887) · JFM 19.0990.02
[1192] Thomson, W. (Lord Kelvin), Hydrodynamics and General Dynamics (1910), Cambridge University Press: Cambridge University Press Cambridge, UK · JFM 41.0019.02
[1193] Thornber, B., Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability, Phys. Fluids, 28, Article 045106 pp. (2016)
[1194] Thornhill, S. G.; Ter Haar, D., Langmuir turbulence and modulational instability, Phys. Rep., 43, 43 (1978)
[1195] Thoroddsen, S. T.; Van Atta, C. W.; Yampolsky, J. S., Experiments on homogeneous turbulence in an unstably stratified fluid, Phys. Fluids, 10, 3155 (1998)
[1196] Timmermans, M.-L.; Marshall, J., Understanding arctic ocean circulation: A review of ocean dynamics in a changing climate, J. Geophys. Res. Oceans, 125 (2020), e2018JC014378
[1197] Tobias, S. M., The solar dynamo: The role of penetration, rotation and shear on convective dynamos, Space Sci. Rev., 144, 77 (2009)
[1198] Tobias, S. M.; Marston, J. B., Direct statistical simulation of jets and vortices in 2D flows, Phys. Fluids, 29, Article 111111 pp. (2017)
[1199] Tolman, R. C., The Principles of Statistical Mechanics (1938), Oxford Univ. Press: Oxford Univ. Press Oxford, U.K. · JFM 64.0886.07
[1200] Tomassini, P., An exact renormalization group analysis of 3D well developed turbulence, Phys. Lett. B, 411, 117 (1997)
[1201] Tordella, D.; Iovieno, M.; Bailey, P. R., Sufficient condition for Gaussian departure in turbulence, Phys. Rev. E, 77, Article 016309 pp. (2008)
[1202] Toschi, F.; Bodenschatz, E., Lagrangian properties of particles in turbulence, Annu. Rev. Fluid Mech., 41, 375 (2009) · Zbl 1157.76020
[1203] Touil, H.; Bertoglio, J.-P.; Shao, L., The decay of turbulence in a bounded domain, J. Turbul., 3, 49 (2002) · Zbl 1082.76566
[1204] Tribbia, J. J.; Baumhefner, D. P., Scale interactions and atmospheric predictability: An updated perspective, Mon. Wea. Rev., 132, 703 (2004)
[1205] Tritton, D., Physical Fluid Dynamics (1988), Clarendon: Clarendon Oxford, U.K. · Zbl 0383.76001
[1206] Tsinober, A., An Informal Conceptual Introduction to Turbulence (2009), Springer · Zbl 1177.76001
[1207] Tsinober, A.; Ortenberg, M.; Shtilman, L., On depression of nonlinearity in turbulence, Phys. Fluids, 11, 2291 (1999) · Zbl 1147.76522
[1208] Tulloch, R.; Smith, K. S., Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum, J. Atmos. Sci., 66, 450 (2009)
[1209] Tung, K. K.; Orlando, W. W., The \(k^{- 3}\) and \(k^{- 5 / 3}\) energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation, J. Atmos. Sci., 41, 375 (2003)
[1210] Turkington, B., Statistical mechanics of two-dimensional and quasi-geostrophic turbulence, (Dauxois, T.; Ruffo, S.; Cugliandolo, L., Long-Range Interacting Systems, Lecture Notes of the Les Houches Summer School (2009), Oxford University Press: Oxford University Press Oxford, UK.)
[1211] Turkington, B.; Majda, A.; Haven, K.; DiBattista, M., Statistical equilibrium predictions of jets and spots on Jupiter, Proc. Natl. Acad. Sci., 98, Article 12346 pp. (2001) · Zbl 0998.85002
[1212] Vaddireddy, H.; Rasheed, A.; Staples, A. E.; Duraisamy, O., Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data, Phys. Fluids, 32, Article 015113 pp. (2020)
[1213] Vallefuoco, D.; Godeferd, F. S.; Naso, A.; Delache, A., Anisotropic turbulent cascades in rotating homogeneous turbulence, (Gorokhovski, M.; Godeferd, F. S., Turbulent Cascades II (2019), Springer: Springer Berlin, Heidelberg)
[1214] Vallgren, A.; Deusebio, E.; Lindborg, E., Possible explanation of the atmospheric kinetic and potential energy spectra, Phys. Rev. Lett., 107, Article 268501 pp. (2011)
[1215] Vallis, G. K., On the predictability of quasi-geostrophic flow: The effects beta and baroclinicity, J. Atmos. Sci., 40, 10 (1983)
[1216] Vallis, G. K., Atmospheric and Oceanic Fluid Dynamics (2006), Cambridge University Press: Cambridge University Press Cambridge
[1217] Van Atta, C. W.; Wyngaard, J. C., On higher-order spectra of turbulence, J. Fluid Mech., 72, 673 (1975) · Zbl 0325.76071
[1218] van Bokhoven, L. J.A.; Cambon, C.; Liechtenstein, L.; Godeferd, F. S.; Clercx, H. J.H., Refined vorticity statistics of decaying rotating three-dimensional turbulence, J. Turbul., 9, 1 (2008) · Zbl 1273.76176
[1219] VanZandt, T. E., A universal spectrum of buoyancy waves in the atmosphere, Geophys. Res. Lett., 9, 575 (1982)
[1220] Vasil’ev, A. N., The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (2004), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1140.82019
[1221] Vassilicos, J. C., Dissipation in turbulent flows, Annu. Rev. Fluid Mech., 47, 95 (2015)
[1222] Vela-Martín, A., The synchronisation of intense vorticity in isotropic turbulence, J. Fluid Mech., 913, R8 (2021) · Zbl 1461.76196
[1223] Veltri, P.; Mangeney, A.; Dobrowolny, M., Cross-helicity effects in anisotropie MHD turbulence, L Nuovo Cimento B, 68, 235 (1982)
[1224] Venaille, A.; Bouchet, F., Solvable phase diagrams and ensemble inequivalence for two-dimensional and geophysical turbulent flows, J. Stat. Phys., 143, 346 (2011) · Zbl 1216.82011
[1225] Vergassola, M., Anomalous scaling for passively advected magnetic fields, Phys. Rev. E, 53, R3021 (1996)
[1226] Verkley, W. T.M.; Severijns, C. A.; Zwaal, B. A., A maximum entropy approach to the interaction between small and large scales in two-dimensional turbulence, Q. J. R. Meteorol Soc., 145, 2221 (2019)
[1227] Vic, C., Deep-ocean mixing driven by small-scale internal tides, Nat. Comm., 10, 2099 (2019)
[1228] Vincent, A.; Meneguzzi, M., The dynamics of vorticity tubes in homogeneous turbulence, J. Fluid Mech, 258, 245 (1994) · Zbl 0800.76157
[1229] Vincenzi, D., The Kraichnan-Kazantsev dynamo, J. Stat. Phys., 106, 1073 (2002) · Zbl 1030.76064
[1230] Vladimirova, N.; Chertkov, M., Self-similarity and universality in Rayleigh-Taylor, Boussinesq turbulence, Phys. Fluids, 21, Article 015102 pp. (2009) · Zbl 1183.76550
[1231] von Weizsäcker, C. V., Das spektrum der turbulenz bei grossen Reynoldsschen zahlen, Z. Phys., 124, 614 (1948) · Zbl 0034.26902
[1232] Waite, M. L.; Snyder, C., Mesoscale energy spectra of moist baroclinic waves, J. Atmos. Sci., 70, 1241 (2013)
[1233] Waleffe, F., Nature of triad interactions in homogeneous turbulence, Phys. Fluids A, 4, 350 (1992) · Zbl 0745.76027
[1234] Waleffe, F., Inertial transfers in the helical decomposition, Phys. Fluids A, 5, 677 (1993) · Zbl 0813.76034
[1235] Wallace, J. M., Space-time correlations in turbulent flow: A review, Theor. Appl. Mech. Lett., 4, Article 022003 pp. (2014)
[1236] Wan, M.; Oughton, S.; Servidio, S.; Matthaeus, W. H., On the accuracy of simulations of turbulence, Phys. Plasmas, 17, Article 082308 pp. (2010)
[1237] Wan, M.; Xiao, Z.; Meneveau, C.; Eyink, G. L.; Chen, S., Dissipation-energy flux correlations as evidence for the Lagrangian energy cascade in turbulence, Phys. Fluids, 22, Article 061702 pp. (2010) · Zbl 1190.76128
[1238] Wang, X.; Tu, C.; Marsch, E.; He, J.; Wang, L., Scale-dependent normalized amplitude and weak spectral anisotropy of magnetic field fluctuations in the solar wind turbulence, J. Astrophys, 816, 15 (2015)
[1239] Wang, Z.; Luo, K.; Li, D.; Tan, J.; Fan, J., Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation, Phys. Fluids, 30, Article 125101 pp. (2018)
[1240] Warhaft, Z., Passive scalars in turbulent flows, Annu. Rev. Fluid Mech., 32, 203 (2000) · Zbl 0988.76042
[1241] Watanabe, S.; Fujita, M.; Kawazoe, S.; Sugimoto, S.; Okada, Y.; Mizuta, R.; Ishii, M., Frequency change of clear-air turbulence over the north Pacific under 2 k global warming-ensemble projections using a 60-km atmospheric general circulation model, J. Meteorol. Soc. Jpn Ser II, 97, 757 (2019)
[1242] Weatheritt, J.; Sandberg, R., A novel evolutionary algorithm applied to algebraic modifications of the RANS stress-strain relationship, J. Comput. Phys., 325, 22 (2016) · Zbl 1375.76141
[1243] Weatheritt, J.; Sandberg, R., Hybrid Reynolds-averaged/large-eddy simulation methodology from symbolic regression: Formulation and application, AIAA J., 55, 3734 (2017)
[1244] Weichman, P. B., Equilibrium theory of coherent vortex and zonal jet formation in a system of nonlinear Rossby waves, Phys. Rev. E, 73, Article 036313 pp. (2006)
[1245] Weichman, P. B., Long-range correlations and coherent structures in magnetohydrodynamic equilibria, Phys. Rev. Lett., 109, Article 235002 pp. (2012)
[1246] Weichman, P. B., Competing turbulent cascades and eddy-wave interactions in shallow water equilibria, Phys. Rev. Fluids, 2, Article 034701 pp. (2017)
[1247] Weichman, P. B., Strong vorticity fluctuations and antiferromagnetic correlations in axisymmetric fluid equilibria, Phys. Rev. Fluids, 4, Article 054703 pp. (2019)
[1248] Weichman, P. B., Quantum-enhanced algorithms for classical target detection in complex environments, Phys. Rev. A, 103, Article 042424 pp. (2021)
[1249] Weichman, P. B.; Petrich, D. M., Statistical equilibrium solutions of the shallow water equations, Phys. Rev. Lett., 86, 1761 (2001)
[1250] Weiss, J. B.; McWilliams, J. C., Temporal scaling behavior of decaying two-dimensional turbulence, Phys. Fluids A, 5, 608 (1993) · Zbl 0776.76042
[1251] Wells, F. (2014), Springer: Springer London
[1252] Wesson, J.; Campbell, D. J., Tokamaks (2011), Oxford University Press: Oxford University Press Oxford, UK · Zbl 1111.82054
[1253] Wheatcroft, G., Rethinking Winston Churchill and Neville Chamberlain [Review of the book Britain at Bay: The Epic Story of the Second World War, 1938-1941 by A. Allport], New York Times Dec. 6, 2020, Page 30 (2020)
[1254] White, D. A., Siqueiros: Biography of a Revolutionary Artist (2009), BookSurge Publishing
[1255] Wicks, R. T.; Horbury, T. S.; Chen, C. H.K.; Schekochihin, A. A., Anisotropy of imbalanced Alfvénic turbulence in fast solar wind, Phys. Rev. Lett., 106, Article 045001 pp. (2011)
[1256] Wiese, K. J., On the perturbation expansion of the KPZ equation, J. Stat. Phys., 93, 143 (1998) · Zbl 0963.82033
[1257] Wilcox, D. C., Turbulence Modeling for CFD (1993), DCW Industries, La Canãda, Calif
[1258] Wilczek, M.; Narita, Y., Wave-number-frequency spectrum for turbulence from a random sweeping hypothesis with mean flow, Phys. Rev. E, 86, Article 066308 pp. (2012)
[1259] Wilczek, M.; Stevens, R. J.; Meneveau, C., Spatio-temporal spectra in the logarithmic layer of wall turbulence: Large-eddy simulations and simple models, J. Fluid Mech., 769, R1 (2015)
[1260] Wilczek, M.; Xu, H.; Narita, Y., A note on Taylor’s hypothesis under large-scale flow variation, Nonlinear Process. Geophys., 21, 645 (2014)
[1261] Wilen, C. D.; Abdullah, S.; Kurinsky, N. A.; Stanford, C.; Cardani, L.; D’Imperio, G.; Tomei, C.; Faoro, L.; Ioffe, L. B.; Liu, C. H.; Opremcak, A.; Christensen, B. G.; DuBois, J. L.; McDermott, R., Correlated charge noise and relaxation errors in superconducting qubits, Nature, 594, 369 (2021)
[1262] Williams, P. D., Transatlantic flight times and climate change, Environ. Res. Lett., 11, Article 024008 pp. (2016)
[1263] Williams, P. D., Increased light, moderate, and severe clear-air turbulence in response to climate change, Adv. Atmos. Sci., 34, 576 (2017)
[1264] Williams, P. D.; Joshi, M. M., Intensification of winter transatlantic aviation turbulence in response to climate change, Nature Clim. Change, 3, 644 (2013)
[1265] Williams, T. J.; Tracy, E. R.; Vahala, G., Application of Kraichnan’s decimated-amplitude scheme to the Betchov model of turbulence, Phys. Rev. Lett., 59, 1922 (1987)
[1266] Williams, T. J.; Tracy, E. R.; Vahala, G., Strong decimation of the Betchov model of turbulence, Physica D, 37, 200 (1989)
[1267] Williams, T. J.; Tracy, E. R.; Vahala, G., Decimation of a turbulence model under statistical constraints, Phys. Rev. A, 40, 3272 (1989)
[1268] Wilson, K. G., The renormalization group: Critical phenomena and the Kondo problem, Rev. Modern Phys., 47, 773 (1975)
[1269] Wilson, K. G., The renormalization group and critical phenomena, Rev. Modern Phys., 55, 583 (1983)
[1270] Wilson, K. G.; Kogut, J., The renormalization group and critical phenomena, Phys. Rep., 12, 75 (1974)
[1271] Wong, M.; Simon, A. A.; Tollefson, J. W.; Barnett, I.; Hsu, A. I.; Stephens, A. W.; Orton, G. S.; Fleming, L., High-resolution UV/Optical/IR imaging of jupiter in 2016-2019, Astrophys. J. Suppl., 247, 58 (2020)
[1272] Wood, R., Stratocumulus clouds, Mon. Wea. Rev., 140, 2373 (2012)
[1273] Wu, T.; Fang, L.; Wang, Z., Exact time scale of energy exchange in triad interactions of homogeneous isotropic turbulence, Phys. Fluids, 33, Article 035136 pp. (2021)
[1274] Wunsch, C.; Ferrari, R., Vertical mixing, energy, and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281 (2004) · Zbl 1125.86313
[1275] Wyld, H. W., Formulation of the theory of turbulence in an incompressible fluid, Ann. Physics, 14, 143 (1961) · Zbl 0099.42003
[1276] Wyngaard, J. C.; Coté, O. R., Cospectral similarity in the atmospheric surface layer, Q. J. R. Meteorol. Soc., 98, 590 (1972)
[1277] Xia, H.; Byrne, D.; Falkovich, G.; Shats, M. G., Upscale energy transfer in thick turbulent fluid layers, Nat. Phys., 7, 321 (2011)
[1278] Xia, H.; Punzmann, H.; Falkovich, G.; Shats, M. G., Turbulence-condensate interaction in two dimensions, Phys. Rev. Lett., 101, Article 194504 pp. (2008)
[1279] Xia, H.; Shats, M. G.; Falkovich, G., Spectrally condensed turbulence in thin layers, Phys. Fluids, 21, Article 125101 pp. (2009) · Zbl 1183.76577
[1280] Xiao, H.; Cinnella, P., Quantification of model uncertainty in RANS simulations: A review, Prog. Aerosp. Sci., 108, 1 (2019)
[1281] Xie, C.; Wang, J.; Li, K.; Ma, C., Artificial neural network approach to large-eddy simulation of compressible isotropic turbulence, Phys. Rev. E, 99, Article 053113 pp. (2019)
[1282] Xiong, S.; Yang, Y., Identifying the tangle of vortex tubes in homogeneous isotropic turbulence, J. Fluid Mech., 874, 952 (2019) · Zbl 1419.76253
[1283] Yaglom, A. M., A. N. Kolmogorov as a fluid mechanician and founder of a school in turbulence research, Annu. Rev. Fluid Mech., 26, 1 (1994) · Zbl 0795.01020
[1284] Yakhot, V., Mean-field approximation and a small parameter in turbulence theory, Phys. Rev. E, 63, Article 026307 pp. (2001)
[1285] Yakhot, V.; Orszag, S. A., Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., 1, 3 (1986) · Zbl 0648.76040
[1286] Yakhot, V.; Orszag, S. A.; She, Z.-S., Space-time correlations in turbulence: Kinematical versus dynamical effects, Phys. Fluids A, 1, 184 (1989) · Zbl 0661.76049
[1287] Yakhot, V.; Orszag, S. A.; Thangam, S.; Gatski, T. B.; Speziale, C. G., Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A, 4, 1510 (1992) · Zbl 0762.76044
[1288] Yamamoto, T.; Shimizu, H.; Inoshita, T.; Nakano, T.; Gotoh, T., Local flow structure of turbulence in three, four, and five dimensions, Phys. Rev. E, 86, Article 046320 pp. (2008)
[1289] Yamani, S.; Keshavarz, B.; Raj, Y.; Zaki, T. A.; McKinley, G. H.; Bischofberger, I., Spectral universality of elastoinertial turbulence, Phys. Rev. Lett, 127, Article 074501 pp. (2021)
[1290] Yamazaki, Y.; Kaneda, Y.; Rubinstein, R., Dynamics of inviscid truncated model of rotating turbulence, J. Phys. Soc. Japan, 71, 81 (2002)
[1291] Yang, X. I.A.; Zafar, S.; Wang, J. X.; Xiao, H., Predictive large-eddy-simulation wall modeling via physics-informed neural networks, Phys. Rev. Fluids, 4, Article 034602 pp. (2019)
[1292] Yarom, E.; Sharon, E., Experimental observation of steady inertial wave turbulence in deep rotating flows, Nat. Phys., 10, 510 (2014)
[1293] Yeung, P. K., Lagrangian Investigations of turbulence, Annu. Rev. Fluid Mech., 34, 115 (2002) · Zbl 1047.76027
[1294] Yeung, P. K.; Brasseur, J. G., The response of isotropic turbulence to isotropic and anisotropic forcing at the large scales, Phys. Fluids A, 5, 884 (1991)
[1295] Yeung, P. K.; Brasseur, J. G.; Wang, Q., Dynamics of direct large-small scale couplings in coherently forced turbulence: Concurrent physical-and fourier-space views, J. Fluid Mech., 283, 43 (1995) · Zbl 0835.76040
[1296] Yeung, P. K.; Ravikumar, K., Advancing understanding of turbulence through extreme-scale computation: Intermittency and simulations at large problem sizes, Phys. Rev. Fluids, 5, Article 110517 pp. (2020)
[1297] Yeung, P. K.; Sawford, B. L., Random-sweeping hypothesis for passive scalars in isotropic turbulence, J. Fluid Mech., 459, 129 (2002) · Zbl 1031.76021
[1298] Yeung, P. K.; Sreenivasan, K. R.; Pope, S. B., Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence, Phys. Rev. Fluids, 3, Article 064603 pp. (2018)
[1299] Yeung, P. K.; Zhai, X. M.; Sreenivasan, K. R., Extreme events in computational turbulence, Proc. Natl. Acad. Sci., 112, 12633 (2015)
[1300] Yeung, P. K.; Zhou, Y., Universality of the Kolmogorov constant in numerical simulations of turbulence, Phys. Rev. E, 56, 1746 (1997)
[1301] Yeung, P. K.; Zhou, Y., Numerical study of rotating turbulence with external forcing, Phys. Fluids, 10, 289 (1998)
[1302] Yoden, S., Jets and annular structures in geophysical fluids, Proc. of AGU Chapman Conference, Savannah, GA. Proc. of AGU Chapman Conference, Savannah, GA, J. Atmos. Sci., 64 (2007), Special Issue
[1303] Yoffe, S. R.; McComb, W. D., Onset criteria for freely decaying isotropic turbulence, Phys. Rev. Fluids, 3, Article 104605 pp. (2018)
[1304] Yokoi, N., Modeling of the turbulent magnetohydrodynamic residual-energy equation using a statistical theory, Phys. Plasmas, 13, Article 062306 pp. (2006)
[1305] Yokoi, N.; Rubinstein, R.; Yoshizawa, A.; Hamba, F., A turbulence model for magnetohydrodynamic plasmas, J. Turbul., 9, N27 (2008)
[1306] Yoshida, K.; Arimitsu, T., Inertial-subrange structures of isotropic incompressible magnetohydrodynamic turbulence in the Lagrangian renormalized approximation, Phys. Fluids, 19, Article 045106 pp. (2007) · Zbl 1146.76575
[1307] Yoshida, K.; Ishihara, T.; Fujita, D.; Yamahira, T.; Kaneda, Y., LES Modelings based on the Lagrangian renormalized approximation, (Kaneda, Y.; Gotoh, T., Statistical Theories and Computational Approaches To Turbulence (2003), Springer: Springer Tokyo, Japan) · Zbl 1082.76569
[1308] Yoshida, K.; Ishihara, T.; Kaneda, Y., Anisotropic spectrum of homogeneous turbulent shear flow in a Lagrangian renormalized approximation, Phys. Fluids, 15, 2385 (2003) · Zbl 1186.76593
[1309] Yoshimatsu, K., Examination of the four-fifths law for longitudinal third-order moments in incompressible magnetohydrodynamic turbulence in a periodic box, Phys. Rev. E, 85, Article 066313 pp. (2012)
[1310] Yoshimatsu, K.; Ariki, T., Error growth in three-dimensional homogeneous turbulence, J. Phys. Soc. Japan, 88, Article 124401 pp. (2019)
[1311] Yoshimatsu, K.; Kaneda, Y., Large-scale structure of velocity and passive scalar fields in freely decaying homogeneous anisotropic turbulence, Phys. Rev. Fluids, 3, Article 104601 pp. (2018)
[1312] Yoshimatsu, K.; Kaneda, Y., No return to reflection symmetry in freely decaying homogeneous turbulence, Phys. Rev. Fluids, 4, Article 024611 pp. (2019)
[1313] Yoshimori, M.; Abe-Ouchi, A.; Watanabe, M.; Oka, A.; Ogura, T., Robust seasonality of arctic warming processes in two different versions of the MIROC GCM, J. Clim., 27, 6358 (2014)
[1314] Yoshizawa, A., Statistical analysis of the deviation of the Reynolds stress from its eddy-viscosity representation, Phys. Fluids, 27, 1377 (1984) · Zbl 0572.76048
[1315] Yoshizawa, A., Statistical analysis of the anisotropy of scalar diffusion in turbulent shear flows, Phys. Fluids, 28, 3226 (1985) · Zbl 0586.76105
[1316] Yoshizawa, A., Statistical theory for magnetohydrodynamic turbulent shear flows, Phys. Fluids, 28, 3313 (1985) · Zbl 0586.76106
[1317] Yoshizawa, A., Subgrid modeling for magnetohydrodynamic turbulent shear flows, Phys. Fluids, 30, 1089 (1987) · Zbl 0621.76050
[1318] Yoshizawa, A., Statistical modelling of passive-scalar diffusion in turbulent shear flows, J. Fluid Mech., 195, 541 (1988) · Zbl 0653.76037
[1319] Yoshizawa, A., Subgrid-scale modeling with a variable length scale, Phys. Fluids A, 1, 1293 (1989)
[1320] Yoshizawa, A., Hydrodynamic and Magnetohydrodynamic Turbulent Flows: Modelling and Statistical Theory (1998), Kluwer: Kluwer Dordrecht, The Netherlands · Zbl 0943.76002
[1321] Yoshizawa, A.; Itoh, S. I.; Itoh, K., Plasma and Fluid Turbulence: Theory and Modelling (2003), Inst Phys Publ: Inst Phys Publ Bristol, UK · Zbl 1137.76002
[1322] Yousef, T. A.; Rincon, F.; Schekochihin, A. A., Exact scaling laws and the local structure of isotropic magnetohydrodynamic turbulence, J. Fluid Mech., 575, 111 (2007) · Zbl 1147.76631
[1323] Zakharov, V. E.; L’vov, V., On statistical description of the nonlinear wave fields, Quan. Electronics, 4, 1084 (1975)
[1324] Zakharov, V. E.; L’vov, V. S.; Falkovich, G., Kolmogoroff Spectra of Turbulence I. Wave Turbulence (1992), Springer-Verlag Berlin Heidelberg · Zbl 0786.76002
[1325] Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D., Theory and transport of nearly incompressible magnetohydrodynamic turbulence, Astrophys. J., 835, 147 (2017)
[1326] Zank, G. P.; Matthaeus, W. H., The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves, Phys. Fluids A, 3, 69 (1991) · Zbl 0718.76049
[1327] Zank, G. P.; Matthaeus, W. H., Nearly incompressible fluids. II: Magnetohydrodynamics, turbulence, and waves, Phys. Fluids A, 5, 257 (1993) · Zbl 0785.76100
[1328] Zank, G. P.; Nakanotani, M.; Zhao, L. L.; Adhikari, L.; Telloni, D., Spectral anisotropy in 2d plus slab magnetohydrodynamic turbulence in the solar wind and upper corona, Astrophys. J., 900, 115 (2020)
[1329] Zank, G. P.; Zhao, L. L.; Adhikari, L.; Telloni, D.; Kasper, J. C.; Bale, S. D., Turbulence transport in the solar corona: Theory, modeling, and Parker Solar Probe, Phys. Plasmas, 28, Article 080501 pp. (2021)
[1330] Zeman, O., A note on the spectra and decay of rotating homogeneous turbulence, Phys. Fluids, 6, 3221 (1994) · Zbl 0832.76033
[1331] Zenit, R., Some fluid mechanical aspects of artistic painting, Phys. Rev. Fluids, 4, Article 110507 pp. (2019)
[1332] Zetina, S.; Godínez, F. A.; Zenit, R., A hydrodynamic instability is used to create aesthetically appealing patterns in painting, PLoS One, 10 (2015), e0126135
[1333] Zhai, X. M.; Sreenivasan, K. R.; Yeung, P. K., Cancellation exponents in isotropic turbulence and magnetohydrodynamic turbulence, Phys. Rev. E, 99, Article 023102 pp. (2019)
[1334] Zhai, X. M.; Yeung, P. K., Evolution of anisotropy in direct numerical simulations of MHD turbulence in a strong magnetic field on elongated periodic domains, Phys. Rev. Fluids, 3, Article 084602 pp. (2018)
[1335] Zhang, X.; Schneider, T.; Kaul, C. M., Sensitivity of idealized mixed-phase stratocumulus to climate perturbations, Q J R Meteorol. Soc., 146, 3285 (2020)
[1336] Zhao, L. L.; Zank, G. P.; Adhikari, L.; Nakanotani, M.; Telloni, D.; Carbone, F., Spectral features in field-aligned solar wind turbulence from Parker Solar Probe observations, Astrophys. J., 898, 113 (2020)
[1337] Zheng, X.; Klein, S. A.; Ghate, V. P.; Santos, S.; McGibbon, J.; Caldwell, P.; Bogenschutz, P.; Lin, W.; Cadeddu, M. P., Assessment of precipitating marine stratocumulus clouds in the E3smv1 atmosphere model: A case study from the ARM magic field campaign, Mon. Wea. Rev., 148, 3341 (2020)
[1338] Zhou, Y., Degrees of locality of energy transfer in the inertial range, Phys. Fluids A, 5, 1092 (1993)
[1339] Zhou, Y., Interacting scales and energy transfer in isotropic turbulence, Phys. Fluids A, 5, 2511 (1993) · Zbl 0798.76032
[1340] Zhou, Y., A phenomenlogical treatment of rotating turbulence, Phys. Fluids, 7, 2092 (1995) · Zbl 1039.76516
[1341] Zhou, Y., Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations, Phys. Plasmas, 14, Article 082701 pp. (2007)
[1342] Zhou, Y., Renormalization group theory for fluid and plasma turbulence, Phys. Rep., 488, 1 (2010)
[1343] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep., 720-722 (2017), 1 · Zbl 1377.76016
[1344] Zhou, Y., Rayleigh-Taylor And Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., 723-725 (2017) · Zbl 1377.76017
[1345] Zhou, Y.; Cabot, W. H., Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios, Phys. Fluids, 31, Article 084106 pp. (2019)
[1346] Zhou, Y.; Clark, T. T.; Clark, D. S.; Glendinning, S. G.; Skinner, M. A.; Huntington, C. M.; Hurricane, O. A.; Dimits, A. M.; Remington, B. A., Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas, 26, Article 080901 pp. (2019)
[1347] Zhou, Y.; Hossain, M.; Vahala, G., Renormalization group theory for the eddy viscosity in subgrid modeling, Phys. Rev. A, 37, 2590 (1988)
[1348] Zhou, Y.; Hossain, M.; Vahala, G., Renormalized eddy viscosity and Kolmogorov’s constant in forced Navier-Stokes turbulence, Phys. Rev. A, 40, 5865 (1989)
[1349] Zhou, Y.; Matthaeus, W. H., Transport and turbulence modeling of solar wind fluctuations, J. Geophys. Res. Space Phys., 95, Article 102911 pp. (1990)
[1350] Zhou, Y.; Matthaeus, W. H., Extended inertial range phenomenology of magnetohydrodynamic turbulence, J. Geophy. Res. Space Phys., 95, 14881 (1990)
[1351] Zhou, Y.; Matthaeus, W. H., Phenomenology treatment of magnetohydrodynamic turbulence with nonequipartition and anisotropy, Phys. Plasmas, 12, Article 056503 pp. (2005)
[1352] Zhou, Y.; Matthaeus, W. H.; Dmitruk, P., Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas, Rev. Modern Phys., 76, 1015 (2004)
[1353] Zhou, Y.; Oughton, S., Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence, Phys. Plasmas, 18, Article 072304 pp. (2011)
[1354] Zhou, Y.; Praskovsky, A.; Oncley, S., On the lighthill relationship and sound generation from isotropic turbulence, Theoret. Comput. Fluid Dyn., 7, 355 (1995) · Zbl 0858.76076
[1355] Zhou, Y.; Praskovsky, A.; Vahala, G., A non-Gaussian phenomenological model for higher-order spectra in turbulence, Phys. Lett. A, 178, 138 (1993)
[1356] Zhou, Y.; Rubinstein, R., Sweeping and straining effects in sound generation by high Reynolds number isotropic turbulence, Phys. Fluids, 8, 647 (1996) · Zbl 1025.76547
[1357] Zhou, Y.; Schilling, O.; Ghosh, S., Subgrid scale and backscatter model for magnetohydrodynamic turbulence based on closure theory: Theoretical formulation, Phys. Rev. E, 66, Article 026309 pp. (2002)
[1358] Zhou, Y.; Speziale, C. G., Advances in the fundamental aspects of turbulence: Energy transfer, interacting scales, and self-preservation in isotropic decay, Appl. Mech. Rev, 51, 267 (1998)
[1359] Zhou, Y.; Vahala, G., Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence, Phys. Rev. E, 47, 2503 (1993)
[1360] Zhou, Y.; Vahala, G.; Thangam, S., Development of a turbulence model based on recursion renormalization group theory, Phys. Rev. E, 49, 5195 (1994)
[1361] Zhou, Y.; Williams, R. J.R.; Ramaprabhu, P.; Groom, M.; Thornber, B.; Hillier, A.; Mostert, W.; Rollin, B.; Balachandar, S.; Powell, P. D.; Mahalov, A.; Attal, N., Rayleigh-Taylor And Richtmyer-Meshkov instabilities: A journey through scales, Physica D, 423, Article 132838 pp. (2021) · Zbl 1491.76030
[1362] Zhou, Y.; Yeung, P. K.; Brasseur, J. G., Scale disparity and spectral transfer in anisotropic numerical turbulence, Phys. Rev. E, 53, 1261 (1996)
[1363] Zhu, Y.; Cambon, C.; Godeferd, F. S.; Salhi, A., Nonlinear spectral model for rotating sheared turbulence, J. Fluid Mech., 866, 5 (2019) · Zbl 1415.76294
[1364] Zidikheri, M. J.; Frederiksen, J. S., Stochastic subgrid parameterizations for simulations of atmospheric baroclinic flows, J. Atmos. Sci., 66, 2844 (2009)
[1365] Zilitinkevich, S.; Elperin, T.; Kleeorin, N.; L’vov, V.; Rogachevskii, I., Energy-and flux-budget turbulence closure model for stably stratified flows, part II: The role of internal gravity waves, Boundary-Layer Meteorol., 133, 139 (2009)
[1366] Zilitinkevich, S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I., Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part i: Steady-state, homogeneous regimes, (Baklanov, A.; Grisogono, B., Atmospheric Boundary Layers (2007), Springer: Springer NY)
[1367] Zilitinkevich, S.; Elperin, T.; Kleeorin, N.; Rogachevskii, I.; Esau, I., A hierarchy of energy- and flux- budget (EFB) turbulence closure models for stably stratified geophysical flows, Boundary-Layer Meteorol., 146, 341 (2013)
[1368] Zinn-Justin, J., Quantum Field Theory and Critical Phenomena (1989), Clarendon: Clarendon Oxford, U.K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.