×

Dynamics of direct large-small scale couplings in coherently forced turbulence: Concurrent physical- and Fourier-space views. (English) Zbl 0835.76040

Kolmogorov hypothesis and similarity theory have a strong influence on the turbulence theory, measurement and modelling. Recently many scientists and experts in turbulence research were interested in the dynamical implications of the Kolmogorov theory, and tried to elaborate the physical meaning of the Kolmogorov hypothesis. As is known, in fully developed turbulent flows inertial nonlinearities create and maintain motions over a wide range of length scales. But there is no influence of the outer energy-dominated scales on the inner dissipation-dominated scales at large scale separation in the high Reynolds number flows. This hypothesis of no direct energy transfer between the large and small scales, which assumes the energy transfer from large-scale motion to small-scale motion to occur within local scale interactions through the inertial-dominated range of intermediate scales with negligible dissipation, has got experimental and numerical support. Nevertheless, the hypothesis of local isotropy in the inertial subrange at extremely high Reynolds numbers remains controversial. This paper tries to complete the understanding of dynamics underlying large and small scale interactions in high Reynolds number turbulence. The paper considers the widely used Kolmogorov hypothesis of large and small scale independence and local isotropy from both the Fourier-space and physical-space points of view. For this aim, the authors employ an analysis of triadic interactions of Navier-Stokes equations in Fourier space.

MSC:

76F99 Turbulence
76F05 Isotropic turbulence; homogeneous turbulence
Full Text: DOI

References:

[1] Melander, J. Fluid Mech. 178 pp 137– (1987)
[2] Lumley, J. Fluid Mech. 82 pp 161– (1977)
[3] DOI: 10.1063/1.858347 · Zbl 0825.76365 · doi:10.1063/1.858347
[4] Browne, J. Fluid Mech. 179 pp 307– (1987)
[5] DOI: 10.1016/0021-9991(88)90022-8 · Zbl 0655.76042 · doi:10.1016/0021-9991(88)90022-8
[6] DOI: 10.1063/1.857966 · doi:10.1063/1.857966
[7] DOI: 10.1063/1.868322 · Zbl 0866.76037 · doi:10.1063/1.868322
[8] Wang, Proc. R. Soc. Lond. 155 pp 137– (1994)
[9] Brasseur, Bull. Am. Phys. Soc. 38 pp 2228– (1993)
[10] Wang, ASME 1993 Forum on Turbulent Flows 155 pp 137– (1993)
[11] Brasseur, Phys. Fluids 4 pp 2538– (1992) · Zbl 0775.76078 · doi:10.1063/1.858441
[12] DOI: 10.1063/1.858309 · Zbl 0745.76027 · doi:10.1063/1.858309
[13] Vincent, J. Fluid Mech. 225 pp 1– (1991)
[14] Atta, Proc. R. Soc. Lond. 434 pp 139– (1991)
[15] Sreenivasan, Proc. R. Soc. Lond. 434 pp 165– (1991)
[16] Antonia, J. Fluid Mech. 163 pp 365– (1986)
[17] DOI: 10.1038/344226a0 · doi:10.1038/344226a0
[18] DOI: 10.1007/BF01065179 · Zbl 0667.76077 · doi:10.1007/BF01065179
[19] Karyakin, Izv. Adad. Nauk SSSR, Mech. Zhidk. i Gaza 5 pp 51– (1991)
[20] Kolmogorov, C. R. Acad. Sci. URSS 30 pp 301– (1941)
[21] Kim, J. Fluid Mech. 251 pp 219– (1993)
[22] Jimenez, J. Fluid Mech. 255 pp 65– (1993)
[23] George, J. Fluid Mech. 233 pp 1– (1991)
[24] Durbin, Trans. ASME I: J. Fluids Engng 113 pp 707– (1991)
[25] Zhou, Phys. Fluids 5 pp 2511– (1994) · Zbl 0798.76032 · doi:10.1063/1.858764
[26] DOI: 10.1063/1.857736 · doi:10.1063/1.857736
[27] DOI: 10.1063/1.858764 · Zbl 0798.76032 · doi:10.1063/1.858764
[28] DOI: 10.1063/1.858593 · doi:10.1063/1.858593
[29] Champagne, J. Fluid Mech. 86 pp 67– (1978)
[30] Yeung, J. Fluid Mech. 207 pp 531– (1989)
[31] Saddoughi, J. Fluid Mech. 268 pp 333– (1994)
[32] DOI: 10.1063/1.857476 · doi:10.1063/1.857476
[33] Onsager, Nuovo Cim. Suppl. 6 pp 279– (1949)
[34] Mestayer, J. Fluid Mech. 125 pp 475– (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.