×

Energy transfers in forced MHD turbulence. (English) Zbl 1273.76434

Summary: The energy cascade in magnetohydrodynamics is studied using high resolution direct numerical simulations of forced isotropic turbulence. The magnetic Prandtl number is unity and the large scale forcing is a function of the velocity that injects a constant rate of energy without generating a mean flow. A shell decomposition of the velocity and magnetic fields is proposed and is extended to the Elsässer variables. The analysis of energy exchanges between these shell variables shows that the velocity and magnetic energy cascades are mainly local and forward, though non-local energy transfer does exist between the large, forced, velocity scales and the small magnetic structures. The possibility of splitting the shell-to-shell energy transfer into forward and backward contributions is also discussed.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76F05 Isotropic turbulence; homogeneous turbulence
Full Text: DOI

References:

[1] Kraichnan R., Journal of Fluid Mechanics 47 pp 525– (1971) · Zbl 0224.76053 · doi:10.1017/S0022112071001216
[2] Domaradski J. A., Physics of Fluids A 2 pp 413– (1990) · doi:10.1063/1.857736
[3] Zhou Y., Physics of Fluids A 5 pp 1092– (1993) · doi:10.1063/1.858593
[4] Kerr R. M., Physics of Fluids 8 pp 197– (1996) · Zbl 1027.76578 · doi:10.1063/1.868827
[5] Rogallo R., Annual Reviews of Fluid Mechanics 16 pp 99– (1984) · doi:10.1146/annurev.fl.16.010184.000531
[6] Ghosal S., Journal of Computational Physics 118 pp 24– (1995) · Zbl 0822.76069 · doi:10.1006/jcph.1995.1077
[7] Pouquet A., Journal of Fluid Mechanics 77 pp 321– (1976) · Zbl 0336.76019 · doi:10.1017/S0022112076002140
[8] Dar G., Physica D 3 pp 207– (2001) · Zbl 1031.76022 · doi:10.1016/S0167-2789(01)00307-4
[9] Schilling O., Journal of Plasma Physics 68 pp 389– (2002) · doi:10.1017/S0022377802002015
[10] Verma M. K., Physics Report 401 pp 229– (2004) · doi:10.1016/j.physrep.2004.07.007
[11] Yoshizawa A., Physics of Fluids 30 pp 1089– (1987) · Zbl 0621.76050 · doi:10.1063/1.866306
[12] Theobald M., Physics of Plasmas 1 pp 3016– (1994) · doi:10.1063/1.870542
[13] Agullo O., Physics of Plasmas 7 pp 3502– (2001) · doi:10.1063/1.1372337
[14] Elsässer W. M., Physical Review 79 pp 183– (1950) · Zbl 0037.28802 · doi:10.1103/PhysRev.79.183
[15] Carati D., Physics of Fluids 7 pp 606– (1995) · Zbl 1032.76559 · doi:10.1063/1.868585
[16] Gledzer E. B., Soviet Physics Doklady 18 pp 216– (1973)
[17] Ohkitani K., Progress of Theoretical Physics 84 pp 415– (1990) · doi:10.1143/PTP.84.415
[18] Biferale L., Annual Review of Fluid Mechanics 35 pp 441– (2003) · Zbl 1041.76037 · doi:10.1146/annurev.fluid.35.101101.161122
[19] Gloaguen C., Physica D 170 pp 154– (1985) · Zbl 0577.76109 · doi:10.1016/0167-2789(85)90002-8
[20] Biskamp D., Physical Review E 50 pp 2702– (1994) · doi:10.1103/PhysRevE.50.2702
[21] Frick P., Physical Review E 57 pp 4155– (1998) · doi:10.1103/PhysRevE.57.4155
[22] Gilbert T., Physical Review E 69 pp 057301– (2004) · doi:10.1103/PhysRevE.69.057301
[23] Debliquy O., Physics of Plasmas 12 pp 042309– (2005) · doi:10.1063/1.1867996
[24] Alexakis A., Physical Review Letters 95 pp 264503.– (2005) · doi:10.1103/PhysRevLett.95.264503
[25] Alexakis A., Physical Review E 72 pp 046301– (2005) · doi:10.1103/PhysRevE.72.046301
[26] Mininni P. D., Phys. Rev. E 72 pp 046302– (2005) · doi:10.1103/PhysRevE.72.046302
[27] Leith C. E., Physics of Fluids A 2 pp 297– (1990) · doi:10.1063/1.857779
[28] Mason P. J., Journal of Fluid Mechanics 242 pp 51– (1992) · Zbl 0765.76039 · doi:10.1017/S0022112092002271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.