×

Nearly incompressible fluids. II: Magnetohydrodynamics, turbulence, and waves. (English) Zbl 0785.76100

This is a continuation of the authors’ work [Phys. Fluids, A 3, No. 1, 69-82 (1991; Zbl 0718.76049)] on the theory of nearly incompressible fluid to magnetohydrodynamics in all three possible plasma \(\beta\) limits \((\beta\ll 1\), \(\beta\sim 1\), \(\beta\gg 1)\), where \(\beta\) is the ratio of thermal to magnetic pressure. The authors derive the equations of nearly incompressible fluid dynamics and then provide a detailed analysis of the spectral properties of the density or any other fluctuations. It is shown that, for a \(\beta\ll 1\) magnetofluid, quasi-one-dimensional long-wavelength acoustic wave propagate parallel to the applied magnetic field. For a \(\beta\sim 1\) plasma, Alfvén waves propagate parallel to the applied magnetic field. The \(\beta\gg 1\) case is fully three- dimensional. In this case, the MHD model gives rise to essentially isotropic behavior in the fluctuations. This model is fully three- dimensional in the incompressible flow field variables and fully three- dimensional in terms of the compressible and acoustic corrections. The high frequency waves correspond to sound waves. The detailed mathematical analysis is presented for each of the three \(\beta\) limits-cases. The authors claim that observations support their theory which has applications to solar wind.

MSC:

76W05 Magnetohydrodynamics and electrohydrodynamics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76F99 Turbulence
85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics

Citations:

Zbl 0718.76049
Full Text: DOI

References:

[1] DOI: 10.1038/291561a0 · doi:10.1038/291561a0
[2] Goldstein B., NASA Special Publication pp 506– (1972)
[3] DOI: 10.1103/PhysRevLett.64.1243 · doi:10.1103/PhysRevLett.64.1243
[4] DOI: 10.1063/1.857865 · Zbl 0718.76049 · doi:10.1063/1.857865
[5] DOI: 10.1017/S002237780001638X · doi:10.1017/S002237780001638X
[6] DOI: 10.1029/GL017i009p01239 · doi:10.1029/GL017i009p01239
[7] DOI: 10.1086/167173 · doi:10.1086/167173
[8] DOI: 10.1029/JA095iA06p08211 · doi:10.1029/JA095iA06p08211
[9] DOI: 10.1029/JA084iA12p07288 · doi:10.1029/JA084iA12p07288
[10] DOI: 10.1029/JA090iA06p05082 · doi:10.1029/JA090iA06p05082
[11] DOI: 10.1029/JA087iA05p03617 · doi:10.1029/JA087iA05p03617
[12] DOI: 10.1029/JA087iA08p06011 · doi:10.1029/JA087iA08p06011
[13] DOI: 10.1029/90JA02609 · doi:10.1029/90JA02609
[14] Roberts D. A., Rev. Geophys. 932 (1991)
[15] Montgomery D. C., NASA Conference Publication pp 107– (1983)
[16] DOI: 10.1029/JA092iA01p00282 · doi:10.1029/JA092iA01p00282
[17] DOI: 10.1017/S0022377800013076 · doi:10.1017/S0022377800013076
[18] DOI: 10.1017/S0305004100026712 · doi:10.1017/S0305004100026712
[19] DOI: 10.1017/S0022112084002299 · Zbl 0548.76052 · doi:10.1017/S0022112084002299
[20] DOI: 10.1029/JA095iA02p01087 · doi:10.1029/JA095iA02p01087
[21] DOI: 10.1029/JA095iA03p02229 · doi:10.1029/JA095iA03p02229
[22] DOI: 10.1029/JA094iA03p02345 · doi:10.1029/JA094iA03p02345
[23] DOI: 10.1029/GL017i005p00567 · doi:10.1029/GL017i005p00567
[24] DOI: 10.1007/BF00149472 · doi:10.1007/BF00149472
[25] Richter A., Ann. Geophys. 6 pp 319– (1988)
[26] DOI: 10.1017/S0022377800000933 · doi:10.1017/S0022377800000933
[27] DOI: 10.1088/0034-4885/43/5/001 · doi:10.1088/0034-4885/43/5/001
[28] DOI: 10.1029/JA095iA12p20673 · doi:10.1029/JA095iA12p20673
[29] DOI: 10.1086/169022 · doi:10.1086/169022
[30] DOI: 10.1007/BF00280740 · Zbl 0343.35056 · doi:10.1007/BF00280740
[31] DOI: 10.1002/cpa.3160350503 · Zbl 0478.76091 · doi:10.1002/cpa.3160350503
[32] DOI: 10.1002/cpa.3160350503 · Zbl 0478.76091 · doi:10.1002/cpa.3160350503
[33] DOI: 10.1063/1.866880 · Zbl 0661.76125 · doi:10.1063/1.866880
[34] DOI: 10.1063/1.858275 · Zbl 0756.76061 · doi:10.1063/1.858275
[35] DOI: 10.1063/1.861310 · doi:10.1063/1.861310
[36] DOI: 10.1086/149674 · doi:10.1086/149674
[37] DOI: 10.1029/JA076i016p03534 · doi:10.1029/JA076i016p03534
[38] DOI: 10.1002/cpa.3160330310 · Zbl 0439.35043 · doi:10.1002/cpa.3160330310
[39] DOI: 10.1063/1.858492 · Zbl 0850.76276 · doi:10.1063/1.858492
[40] DOI: 10.1017/S002211205900009X · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[41] DOI: 10.1063/1.863455 · Zbl 0467.76100 · doi:10.1063/1.863455
[42] DOI: 10.1103/PhysRevLett.67.3741 · doi:10.1103/PhysRevLett.67.3741
[43] DOI: 10.1029/JA095iA07p10291 · doi:10.1029/JA095iA07p10291
[44] DOI: 10.1098/rspa.1952.0060 · Zbl 0049.25905 · doi:10.1098/rspa.1952.0060
[45] DOI: 10.1029/90JA01991 · doi:10.1029/90JA01991
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.