×

Complex quantum networks: a topical review. (English) Zbl 07871238

Summary: These are exciting times for quantum physics as new quantum technologies are expected to soon transform computing at an unprecedented level. Simultaneously network science is flourishing proving an ideal mathematical and computational framework to capture the complexity of large interacting systems. Here we provide a comprehensive and timely review of the rising field of complex quantum networks. On one side, this subject is key to harness the potential of complex networks in order to provide design principles to boost and enhance quantum algorithms and quantum technologies. On the other side this subject can provide a new generation of quantum algorithms to infer significant complex network properties. The field features fundamental research questions as diverse as designing networks to shape Hamiltonians and their corresponding phase diagram, taming the complexity of many-body quantum systems with network theory, revealing how quantum physics and quantum algorithms can predict novel network properties and phase transitions, and studying the interplay between architecture, topology and performance in quantum communication networks. Our review covers all of these multifaceted aspects in a self-contained presentation aimed both at network-curious quantum physicists and at quantum-curious network theorists. We provide a framework that unifies the field of quantum complex networks along four main research lines: network-generalized, quantum-applied, quantum-generalized and quantum-enhanced. Finally we draw attention to the connections between these research lines, which can lead to new opportunities and new discoveries at the interface between quantum physics and network science.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

References:

[1] Montanaro, A., Quantum algorithms: an overview, npj Quantum Inf., 2, 1-8, 2016 · doi:10.1038/npjqi.2015.23
[2] Giovannetti, V.; Lloyd, S.; Maccone, L., Advances in quantum metrology, Nat. Photon., 5, 222-9, 2011 · doi:10.1038/nphoton.2011.35
[3] Wehner, S.; Elkouss, D.; Hanson, R., Quantum internet: a vision for the road ahead, Science, 362, eaam9288, 2018 · Zbl 1431.81047 · doi:10.1126/science.aam9288
[4] Georgescu, I. M.; Ashhab, S.; Nori, F., Quantum simulation, Rev. Mod. Phys., 86, 153, 2014 · doi:10.1103/RevModPhys.86.153
[5] Bianconi, G., Interdisciplinary and physics challenges of network theory, Europhys. Lett., 111, 2015 · doi:10.1209/0295-5075/111/56001
[6] Biamonte, J.; Faccin, M.; De Domenico, M., Complex networks from classical to quantum, Commun. Phys., 2, 1-10, 2019 · doi:10.1038/s42005-019-0152-6
[7] Anderson, P. W., More is different: broken symmetry and the nature of the hierarchical structure of science, Science, 177, 393-6, 1972 · doi:10.1126/science.177.4047.393
[8] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-worldʼnetworks, Nature, 393, 440-2, 1998 · Zbl 1368.05139 · doi:10.1038/30918
[9] Barabási, A-L; Albert, R., Emergence of scaling in random networks, Science, 286, 509-12, 1999 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[10] Barabási, A-L, Network Science, 2016, Citeseer
[11] Newman, M., Networks, 2010, Oxford University Press · Zbl 1195.94003
[12] Bullmore, E.; Sporns, O., Complex brain networks: graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci., 10, 186-98, 2009 · doi:10.1038/nrn2575
[13] Bianconi, G.; Barabási, A-L, Bose-Einstein condensation in complex networks, Phys. Rev. Lett., 86, 5632, 2001 · doi:10.1103/PhysRevLett.86.5632
[14] Sundar, B.; Valdez, M. A.; Carr, L. D.; Hazzard, K. R A., Complex-network description of thermal quantum states in the Ising spin chain, Phys. Rev. A, 97, 2018 · doi:10.1103/PhysRevA.97.052320
[15] Mendes-Santos, T., Wave function network description and Kolmogorov complexity of quantum many-body systems, 2023
[16] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F F., Critical phenomena in complex networks, Rev. Mod. Phys., 80, 1275, 2008 · doi:10.1103/RevModPhys.80.1275
[17] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Resilience of the Internet to random breakdowns, Phys. Rev. Lett., 85, 4626, 2000 · doi:10.1103/PhysRevLett.85.4626
[18] Cohen, R.; Erez, K.; Ben-Avraham, D.; Havlin, S., Breakdown of the Internet under intentional attack, Phys. Rev. Lett., 86, 3682, 2001 · doi:10.1103/PhysRevLett.86.3682
[19] Dunjko, V.; Wittek, P., A non-review of quantum machine learning: trends and explorations, Quantum Views, 4, 32, 2020 · doi:10.22331/qv-2020-03-17-32
[20] Ventura, D.; Martinez, T., Quantum associative memory, Inf. Sci., 124, 273-96, 2000 · doi:10.1016/S0020-0255(99)00101-2
[21] Trugenberger, C. A., Probabilistic quantum memories, Phys. Rev. Lett., 87, 2001 · doi:10.1103/PhysRevLett.87.067901
[22] Trugenberger, C. A., Quantum pattern recognition, Quantum Inf. Process., 1, 471-93, 2002 · doi:10.1023/A:1024022632303
[23] Mülken, O.; Dolgushev, M.; Galiceanu, M., Complex quantum networks: From universal breakdown to optimal transport, Phys. Rev. E, 93, 2016 · doi:10.1103/PhysRevE.93.022304
[24] Manzano, G.; Galve, F.; Luca Giorgi, G.; Hernández-García, E.; Zambrini, R., Synchronization, quantum correlations and entanglement in oscillator networks, Sci. Rep., 3, 1439, 2013 · doi:10.1038/srep01439
[25] Sachdev, S., Quantum Phase Transitions, 2011, Cambridge University Press · Zbl 1233.82003
[26] Kempe, J., Quantum random walks: an introductory overview, Contemp. Phys., 44, 307-27, 2003 · doi:10.1080/00107151031000110776
[27] Aharonov, Y.; Davidovich, L.; Zagury, N., Quantum random walks, Phys. Rev. A, 48, 1687-90, 1993 · doi:10.1103/PhysRevA.48.1687
[28] Childs, A. M., universal computation by quantum walk, Phys. Rev. Lett., 102, 2009 · doi:10.1103/PhysRevLett.102.180501
[29] Childs, A. M.; Cleve, R.; Deotto, E.; Farhi, E.; Gutmann, S.; Spielman, D. A., Exponential algorithmic speedup by a quantum walk, 59-68, 2003 · Zbl 1192.81059 · doi:10.1145/780542.780552
[30] Tavakoli, A.; Pozas-Kerstjens, A.; Luo, M-X; Renou, M-O, Bell nonlocality in networks, Rep. Prog. Phys., 85, 2022 · doi:10.1088/1361-6633/ac41bb
[31] Jones, B. D M.; Supić, I.; Uola, R.; Brunner, N.; Skrzypczyk, P., Network quantum steering, Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.170405
[32] Andrew Valdez, M.; Jaschke, D.; Vargas, D. L.; Carr, L. D., Quantifying complexity in quantum phase transitions via mutual information complex networks, Phys. Rev. Lett., 119, 2017 · doi:10.1103/PhysRevLett.119.225301
[33] Sokolov, B.; Rossi, M. A C.; García-Pérez, G.; Maniscalco, S., Emergent entanglement structures and self-similarity in quantum spin chains, Phil. Trans. R. Soc. A, 380, 2022 · doi:10.1098/rsta.2020.0421
[34] Passerini, F.; Severini, S., The von Neumann entropy of networks, 2008
[35] Bianconi, G., The topological Dirac equation of networks and simplicial complexes, J. Phys. Complex., 2, 2021 · doi:10.1088/2632-072X/ac19be
[36] Mehic, M., Quantum key distribution: a networking perspective, ACM Comput. Surv., 53, 1-41, 2020 · doi:10.1145/3402192
[37] Jeff Kimble, H., The quantum internet, Nature, 453, 1023-30, 2008 · doi:10.1038/nature07127
[38] Heinosaari, T.; Ziman, M., The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, 2011, Cambridge University Press
[39] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information, 2010, Cambridge University Press · Zbl 1288.81001
[40] Breuer, H-P; Petruccione, F., The Theory of Open Quantum Systems, 2007, Oxford University Press · Zbl 1223.81001
[41] Kolmogorov, A. N.; Bharucha-Reid, A. T., Foundations of the Theory of Probability, 2018, Courier Dover Publications · Zbl 1422.60001
[42] Gnutzmann, S.; Smilansky, U., Quantum graphs: applications to quantum chaos and universal spectral statistics, Adv. Phys., 55, 527-625, 2006 · doi:10.1080/00018730600908042
[43] Smilansky, U., Discrete graphs-a paradigm model for quantum chaos, 97-124, 2013, Springer · Zbl 1319.81047 · doi:10.1007/978-3-0348-0697-8_3
[44] Haake, F., Quantum Signatures of Chaos, 1991, Springer · Zbl 0741.58055
[45] Balasubramanian, V.; Caputa, P.; Magan, J. M.; Wu, Q., Quantum chaos and the complexity of spread of states, Phys. Rev. D, 106, 2022 · doi:10.1103/PhysRevD.106.046007
[46] Glauber, R. J., Photon correlations, Phys. Rev. Lett., 10, 84, 1963 · doi:10.1103/PhysRevLett.10.84
[47] Glauber, R. J., The quantum theory of optical coherence, Phys. Rev., 130, 2529, 1963 · doi:10.1103/PhysRev.130.2529
[48] Werner, R. F., Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A, 40, 4277, 1989 · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[49] Braunstein, S. L.; Van Loock, P., Quantum information with continuous variables, Rev. Mod. Phys., 77, 513, 2005 · Zbl 1205.81010 · doi:10.1103/RevModPhys.77.513
[50] Breuer, H-P; Laine, E-M; Piilo, J.; Vacchini, B., Colloquium: Non-Markovian dynamics in open quantum systems, Rev. Mod. Phys., 88, 2016 · doi:10.1103/RevModPhys.88.021002
[51] Uhlmann, A., The ‘transition probability’ in the state space of a*-algebra, Rep. Math. Phys., 9, 273-9, 1976 · Zbl 0355.46040 · doi:10.1016/0034-4877(76)90060-4
[52] Jozsa, R., Fidelity for mixed quantum states, J. Mod. Opt., 41, 2315-23, 1994 · Zbl 0941.81508 · doi:10.1080/09500349414552171
[53] Chaudhury, S.; Smith, A.; Anderson, B. E.; Ghose, S.; Jessen, P. S., Quantum signatures of chaos in a kicked top, Nature, 461, 768-71, 2009 · doi:10.1038/nature08396
[54] Frahm, K. M.; Fleckinger, R.; Shepelyansky, D. L., Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections, Eur. Phys. J. D, 29, 139-55, 2004 · doi:10.1140/epjd/e2004-00038-x
[55] Emerson, J.; Weinstein, Y. S.; Lloyd, S.; Cory, D. G., Fidelity decay as an efficient indicator of quantum chaos, Phys. Rev. Lett., 89, 2002 · doi:10.1103/PhysRevLett.89.284102
[56] Bianconi, G., Multilayer Networks: Structure and Function, 2018, Oxford University Press · Zbl 1391.94004
[57] Bianconi, G., Higher-Order Networks, 2021, Cambridge University Press · Zbl 1494.82002
[58] Chung, F. R K., Spectral Graph Theory, vol 92, 1997, American Mathematical Society · Zbl 0867.05046
[59] Erdős, P., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5, 17-60, 1960 · Zbl 0103.16301
[60] Bianconi, G., The entropy of randomized network ensembles, Europhys. Lett., 81, 2007 · doi:10.1209/0295-5075/81/28005
[61] Bianconi, G., Entropy of network ensembles, Phys. Rev. E, 79, 2009 · doi:10.1103/PhysRevE.79.036114
[62] Anand, K.; Bianconi, G., Entropy measures for networks: toward an information theory of complex topologies, Phys. Rev. E, 80, 2009 · doi:10.1103/PhysRevE.80.045102
[63] Fortunato, S., Community detection in graphs, Phys. Rep., 486, 75-174, 2010 · doi:10.1016/j.physrep.2009.11.002
[64] Blondel, V. D.; Guillaume, J-L; Lambiotte, R.; Lefebvre, E., Fast unfolding of communities in large networks, J. Stat. Mech., 2008, 2008 · Zbl 1459.91130 · doi:10.1088/1742-5468/2008/10/P10008
[65] Newman, M. E J., Modularity and community structure in networks, Proc. Natl Acad. Sci., 103, 8577-82, 2006 · doi:10.1073/pnas.0601602103
[66] Rosvall, M.; Bergstrom, C. T., Maps of random walks on complex networks reveal community structure, Proc. Natl Acad. Sci., 105, 1118-23, 2008 · doi:10.1073/pnas.0706851105
[67] Nakajima, K.; Fujii, K.; Negoro, M.; Mitarai, K.; Kitagawa, M., Boosting computational power through spatial multiplexing in quantum reservoir computing, Phys. Rev. Appl., 11, 2019 · doi:10.1103/PhysRevApplied.11.034021
[68] Nokkala, J.; Martínez-Pe na, R.; Zambrini, R.; Soriano, M. C., High-performance reservoir computing with fluctuations in linear networks, IEEE Trans. Neural Netw. Learn. Syst., 33, 2664-75, 2022 · doi:10.1109/TNNLS.2021.3105695
[69] Ma, H.; Prosperino, D.; Haluszczynski, A.; Räth, C., Efficient forecasting of chaotic systems with block-diagonal and binary reservoir computing, Chaos, 33, 2023 · Zbl 07858604 · doi:10.1063/5.0151290
[70] Newman, M. E J.; Girvan, M., Finding and evaluating community structure in networks, Phys. Rev. E, 69, 2004 · doi:10.1103/PhysRevE.69.026113
[71] Lancichinetti, A.; Fortunato, S.; Radicchi, F., Benchmark graphs for testing community detection algorithms, Phys. Rev. E, 78, 2008 · doi:10.1103/PhysRevE.78.046110
[72] Newman, M. E J., The structure of scientific collaboration networks, Proc. Natl Acad. Sci., 98, 404-9, 2001 · Zbl 1065.00518 · doi:10.1073/pnas.98.2.404
[73] Hartmann, A. K.; Weigt, M., Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics, 2006, Wiley
[74] Liu, Y-Y; Slotine, J-J; Barabási, A-L, Controllability of complex networks, Nature, 473, 167-73, 2011 · doi:10.1038/nature10011
[75] Dahlberg, A.; Helsen, J.; Wehner, S., How to transform graph states using single-qubit operations: computational complexity and algorithms, Quantum Sci. Technol., 5, 2020 · doi:10.1088/2058-9565/aba763
[76] Dahlberg, A.; Helsen, J.; Wehner, S., Transforming graph states to bell-pairs is np-complete, Quantum, 4, 348, 2020 · doi:10.22331/q-2020-10-22-348
[77] Lambiotte, R.; Rosvall, M.; Scholtes, I., From networks to optimal higher-order models of complex systems, Nat. Phys., 15, 313-20, 2019 · doi:10.1038/s41567-019-0459-y
[78] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 97-125, 2012 · doi:10.1016/j.physrep.2012.03.001
[79] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1-122, 2014 · doi:10.1016/j.physrep.2014.07.001
[80] Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J-G; Petri, G., Networks beyond pairwise interactions: structure and dynamics, Phys. Rep., 874, 1-92, 2020 · Zbl 1472.05143 · doi:10.1016/j.physrep.2020.05.004
[81] Battiston, F., The physics of higher-order interactions in complex systems, Nat. Phys., 17, 1093-8, 2021 · doi:10.1038/s41567-021-01371-4
[82] Bianconi, G., Statistical mechanics of multiplex networks: entropy and overlap, Phys. Rev. E, 87, 2013 · doi:10.1103/PhysRevE.87.062806
[83] Menichetti, G.; Remondini, D.; Panzarasa, P.; Mondragón, R. J.; Bianconi, G., Weighted multiplex networks, PLoS One, 9, 2014 · doi:10.1371/journal.pone.0097857
[84] Buldyrev, S. V.; Parshani, R.; Paul, G.; Stanley, H. E.; Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 464, 1025-8, 2010 · doi:10.1038/nature08932
[85] Millán, A. P.; Torres, J. J.; Bianconi, G., Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124, 2020 · doi:10.1103/PhysRevLett.124.218301
[86] Ghorbanchian, R.; Restrepo, J. G.; Torres, J. J.; Bianconi, G., Higher-order simplicial synchronization of coupled topological signals, Commun. Phys., 4, 120, 2021 · doi:10.1038/s42005-021-00605-4
[87] Mahler, G.; Wawer, R., Quantum networks: dynamics of open nanostructures, VLSI Des., 8, 191-6, 1998 · doi:10.1155/1998/28384
[88] Perakis, F.; Mattheakis, M.; Tsironis, G. P., Small-world networks of optical fiber lattices, J. Opt., 16, 2014 · doi:10.1088/2040-8978/16/10/102003
[89] Gaio, M.; Saxena, D.; Bertolotti, J.; Pisignano, D.; Camposeo, A.; Sapienza, R., A nanophotonic laser on a graph, Nat. Commun., 10, 1-7, 2019 · doi:10.1038/s41467-018-08132-7
[90] Yurke, B.; Denker, J. S., Quantum network theory, Phys. Rev. A, 29, 1419, 1984 · doi:10.1103/PhysRevA.29.1419
[91] Deutsch, D. E., Quantum computational networks, Proc. R. Soc. A, 425, 73-90, 1989 · Zbl 0691.68054 · doi:10.1098/rspa.1989.0099
[92] Hein, M.; Eisert, J.; Briegel, H. J., Multiparty entanglement in graph states, Phys. Rev. A, 69, 2004 · Zbl 1232.81007 · doi:10.1103/PhysRevA.69.062311
[93] Bianconi, G., Enhancement of T_c in the superconductor-insulator phase transition on scale-free networks, J. Stat. Mech., 2012, 2012 · doi:10.1088/1742-5468/2012/07/P07021
[94] Bianconi, G., Superconductor-insulator transition on annealed complex networks, Phys. Rev. E, 85, 2012 · doi:10.1103/PhysRevE.85.061113
[95] Halu, A.; Ferretti, L.; Vezzani, A.; Bianconi, G., Phase diagram of the Bose-Hubbard model on complex networks, Europhys. Lett., 99, 2012 · doi:10.1209/0295-5075/99/18001
[96] Bianconi, G., Superconductor-insulator transition in a network of 2d percolation clusters, Europhys. Lett., 101, 2013 · doi:10.1209/0295-5075/101/26003
[97] Halu, A.; Garnerone, S.; Vezzani, A.; Bianconi, G., Phase transition of light on complex quantum networks, Phys. Rev. E, 87, 2013 · doi:10.1103/PhysRevE.87.022104
[98] Maciel, C. M.; Mendes, C. F O.; Strunz, W. T.; Galiceanu, M., Quantum transport on generalized scale-free networks, Phys. Rev. A, 102, 2020 · doi:10.1103/PhysRevA.102.032219
[99] Chakraborty, S.; Novo, L.; Ambainis, A.; Omar, Y., Spatial search by quantum walk is optimal for almost all graphs, Phys. Rev. Lett., 116, 2016 · doi:10.1103/PhysRevLett.116.100501
[100] Li, S.; Boettcher, S., Renormalization group for a continuous-time quantum search in finite dimensions, Phys. Rev. A, 95, 2017 · doi:10.1103/PhysRevA.95.032301
[101] Chakraborty, S.; Novo, L.; Roland, J’emie, Optimality of spatial search via continuous-time quantum walks, Phys. Rev. A, 102, 2020 · doi:10.1103/PhysRevA.102.032214
[102] Nokkala, J.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J., Complex quantum networks as structured environments: engineering and probing, Sci. Rep., 6, 1-7, 2016 · doi:10.1038/srep26861
[103] Alet, F.; Laflorencie, N., Many-body localization: an introduction and selected topics, C. R. Phys., 19, 498-525, 2018 · doi:10.1016/j.crhy.2018.03.003
[104] Vojta, M., Quantum phase transitions, Rep. Prog. Phys., 66, 2069, 2003 · doi:10.1088/0034-4885/66/12/R01
[105] Carr, L., Understanding Quantum Phase Transitions, 2010, CRC press
[106] Heyl, M., Dynamical quantum phase transitions: a review, Rep. Prog. Phys., 81, 2018 · doi:10.1088/1361-6633/aaaf9a
[107] Chepuri, R. T C.; Kovács, I. A., Complex quantum network models from spin clusters, Commun. Phys., 6, 271, 2023 · doi:10.1038/s42005-023-01394-8
[108] Burioni, R.; Cassi, D.; Rasetti, M.; Sodano, P.; Vezzani, A., Bose-Einstein condensation on inhomogeneous complex networks, J. Phys. B: At. Mol. Opt. Phys., 34, 4697, 2001 · doi:10.1088/0953-4075/34/23/314
[109] Burioni, R.; Cassi, D.; Meccoli, I.; Rasetti, M.; Regina, S.; Sodano, P.; Vezzani, A., Bose-Einstein condensation in inhomogeneous Josephson arrays, Europhys. Lett., 52, 251, 2000 · doi:10.1209/epl/i2000-00431-5
[110] Sade, M.; Kalisky, T.; Havlin, S.; Berkovits, R., Localization transition on complex networks via spectral statistics, Phys. Rev. E, 72, 2005 · doi:10.1103/PhysRevE.72.066123
[111] Jahnke, Łukas; Kantelhardt, J. W.; Berkovits, R.; Havlin, S., Wave localization in complex networks with high clustering, Phys. Rev. Lett., 101, 2008 · doi:10.1103/PhysRevLett.101.175702
[112] Bonamassa, I.; Gross, B.; Laav, M.; Volotsenko, I.; Frydman, A.; Havlin, S., Interdependent superconducting networks, Nat. Phys., 19, 1-8, 2023 · doi:10.1038/s41567-023-02029-z
[113] Kempkes, S. N.; Slot, M. R.; Freeney, S. E.; Zevenhuizen, S. J M.; Vanmaekelbergh, D.; Swart, I.; Morais Smith, C., Design and characterization of electrons in a fractal geometry, Nat. Phys., 15, 127-31, 2019 · doi:10.1038/s41567-018-0328-0
[114] Pawela, L.; Gawron, P.; Adam Miszczak, J.; Sadowski, P., Generalized open quantum walks on Apollonian networks, PLoS One, 10, 2015 · doi:10.1371/journal.pone.0130967
[115] De Oliveira, I. N.; de Moura, F. A B. F.; Lyra, M. L.; Andrade, J. S.; Albuquerque, E. L., Bose-Einstein condensation in the Apollonian complex network, Phys. Rev. E, 81, 2010 · doi:10.1103/PhysRevE.81.030104
[116] Almeida, G. M A.; Souza, A. M C., Quantum transport with coupled cavities on an Apollonian network, Phys. Rev. A, 87, 2013 · doi:10.1103/PhysRevA.87.033804
[117] Xu, X. P.; Liu, F., Coherent exciton transport on scale-free networks, New J. Phys., 10, 2008 · doi:10.1088/1367-2630/10/12/123012
[118] De Oliveira, I. N.; De Moura, F. A B. F.; Lyra, M. L.; Andrade, J. S.; Albuquerque, E. L., Free-electron gas in the Apollonian network: multifractal energy spectrum and its thermodynamic fingerprints, Phys. Rev. E, 79, 2009 · doi:10.1103/PhysRevE.79.016104
[119] Souza, A. M C.; Herrmann, H., Correlated electron systems on the Apollonian network, Phys. Rev. B, 75, 2007 · doi:10.1103/PhysRevB.75.054412
[120] Andrade, J. S.; Herrmann, H. J.; Andrade, R. F S.; Da Silva, L. R., Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling and with matching graphs, Phys. Rev. Lett., 94, 2005 · doi:10.1103/PhysRevLett.94.018702
[121] Kuramoto, Y.; Araki, H., Self-entrainment of a population of coupled non-linear oscillators, 420-2, 1975, Springer · Zbl 0335.34021 · doi:10.1007/BFb0013365
[122] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 93-153, 2008 · doi:10.1016/j.physrep.2008.09.002
[123] Wiesenfeld, K.; Colet, P.; Strogatz, S. H., Frequency locking in Josephson arrays: connection with the Kuramoto model, Phys. Rev. E, 57, 1563, 1998 · doi:10.1103/PhysRevE.57.1563
[124] Witthaut, D.; Wimberger, S.; Burioni, R.; Timme, M., Classical synchronization indicates persistent entanglement in isolated quantum systems, Nat. Commun., 8, 1-7, 2017 · doi:10.1038/ncomms14829
[125] Scholes, G. D., Limits of exciton delocalization in molecular aggregates, Faraday Discuss., 221, 265-80, 2020 · doi:10.1039/C9FD00064J
[126] Velasco, V.; Silva Neto, M. B.; Perali, A.; Wimberger, S.; Bishop, A. R.; Conradson, S. D., Evolution of charge-lattice dynamics across the Kuramoto synchronization phase diagram of quantum tunneling polarons in cuprate superconductors, Condens. Matter, 6, 52, 2021 · doi:10.3390/condmat6040052
[127] Orth, P. P.; Roosen, D.; Hofstetter, W.; Le Hur, K., Dynamics, synchronization and quantum phase transitions of two dissipative spins, Phys. Rev. B, 82, 2010 · doi:10.1103/PhysRevB.82.144423
[128] Mari, A.; Farace, A.; Didier, N.; Giovannetti, V.; Fazio, R., Measures of quantum synchronization in continuous variable systems, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.103605
[129] Galve, F.; Giorgi, G. L.; Zambrini, R., Quantum correlations and synchronization measures, Lectures on General Quantum Correlations and Their Applications, 393-420, 2017, Springer · doi:10.1007/978-3-319-53412-1_18
[130] Li, W.; Li, C.; Song, H., Quantum synchronization and quantum state sharing in an irregular complex network, Phys. Rev. E, 95, 2017 · doi:10.1103/PhysRevE.95.022204
[131] He, F.; Li, C.; Fan, X.; Lu, Y.; Sun, J., Synchronization and identification of uncertain time-variant network consisting of dicke models, Eur. Phys. J. D, 73, 1-7, 2019 · doi:10.1140/epjd/e2019-90232-0
[132] Lee, T. E.; Sadeghpour, H. R., Quantum synchronization of quantum van der Pol oscillators with trapped ions, Phys. Rev. Lett., 111, 2013 · doi:10.1103/PhysRevLett.111.234101
[133] Lee, T. E.; Chan, C-K; Wang, S., Entanglement tongue and quantum synchronization of disordered oscillators, Phys. Rev. E, 89, 2014 · doi:10.1103/PhysRevE.89.022913
[134] Walter, S.; Nunnenkamp, A.; Bruder, C., Quantum synchronization of two van der Pol oscillators, Ann. Phys., Lpz., 527, 131-8, 2015 · Zbl 1312.81148 · doi:10.1002/andp.201400144
[135] Cabot, A.; Galve, F.; Eguíluz, V. M.; Klemm, K.; Maniscalco, S.; Zambrini, R., Unveiling noiseless clusters in complex quantum networks, npj Quantum Inf., 4, 1-9, 2018 · doi:10.1038/s41534-018-0108-9
[136] Benedetti, C.; Galve, F.; Mandarino, A.; Paris, M. G A.; Zambrini, R., Minimal model for spontaneous quantum synchronization, Phys. Rev. A, 94, 2016 · doi:10.1103/PhysRevA.94.052118
[137] Lohe, M. A., Non-Abelian Kuramoto models and synchronization, J. Phys. A: Math. Theor., 42, 2009 · Zbl 1187.37048 · doi:10.1088/1751-8113/42/39/395101
[138] Lohe, M. A., Quantum synchronization over quantum networks, J. Phys. A: Math. Theor., 43, 2010 · Zbl 1204.81039 · doi:10.1088/1751-8113/43/46/465301
[139] Abanin, D. A.; Papić, Z., Recent progress in many-body localization, Ann. Phys., Lpz., 529, 2017 · Zbl 1370.81225 · doi:10.1002/andp.201700169
[140] Huse, D. A.; Nandkishore, R.; Oganesyan, V.; Pal, A.; Sondhi, S. L., Localization-protected quantum order, Phys. Rev. B, 88, 2013 · doi:10.1103/PhysRevB.88.014206
[141] Bahri, Y.; Vosk, R.; Altman, E.; Vishwanath, A., Localization and topology protected quantum coherence at the edge of hot matter, Nat. Commun., 6, 1-6, 2015 · doi:10.1038/ncomms8341
[142] Martínez-Pe na, R.; Giorgi, G. L.; Nokkala, J.; Soriano, M. C.; Zambrini, R., Dynamical phase transitions in quantum reservoir computing, Phys. Rev. Lett., 127, 2021 · doi:10.1103/PhysRevLett.127.100502
[143] Laumann, C. R.; Moessner, R.; Scardicchio, A.; Lal Sondhi, S., Quantum annealing: the fastest route to quantum computation?, Eur. Phys. J. Spec. Top., 224, 75-88, 2015 · doi:10.1140/epjst/e2015-02344-2
[144] Ostilli, M., Absence of small-world effects at the quantum level and stability of the quantum critical point, Phys. Rev. E, 102, 2020 · doi:10.1103/PhysRevE.102.052126
[145] Masuda, N.; Porter, M. A.; Lambiotte, R., Random walks and diffusion on networks, Phys. Rep., 716, 1-58, 2017 · Zbl 1377.05180 · doi:10.1016/j.physrep.2017.07.007
[146] Aharonov, D.; Ambainis, A.; Kempe, J.; Vazirani, U., Quantum walks on graphs, 50-59, 2001 · Zbl 1323.81020 · doi:10.1145/380752.380758
[147] Lovett, N. B.; Cooper, S.; Everitt, M.; Trevers, M.; Kendon, V., Universal quantum computation using the discrete-time quantum walk, Phys. Rev. A, 81, 2010 · doi:10.1103/PhysRevA.81.042330
[148] Underwood, M. S.; Feder, D. L., Universal quantum computation by discontinuous quantum walk, Phys. Rev. A, 82, 2010 · doi:10.1103/PhysRevA.82.042304
[149] Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T-K; Mančal, T.; Cheng, Y-C; Blankenship, R. E.; Fleming, G. R., Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature, 446, 782-6, 2007 · doi:10.1038/nature05678
[150] Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M G.; Brumer, P.; Scholes, G. D., Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature, Nature, 463, 644-7, 2010 · doi:10.1038/nature08811
[151] Bose, S., Quantum communication through an unmodulated spin chain, Phys. Rev. Lett., 91, 2003 · doi:10.1103/PhysRevLett.91.207901
[152] Bose, S., Quantum communication through spin chain dynamics: an introductory overview, Contemp. Phys., 48, 13-30, 2007 · doi:10.1080/00107510701342313
[153] Watrous, J., Quantum simulations of classical random walks and undirected graph connectivity, J. Comput. Syst. Sci., 62, 376-91, 2001 · Zbl 0990.68519 · doi:10.1006/jcss.2000.1732
[154] Kendon, V. M., A random walk approach to quantum algorithms, Phil. Trans. R. Soc. A, 364, 3407-22, 2006 · Zbl 1152.81751 · doi:10.1098/rsta.2006.1901
[155] Faccin, M.; Johnson, T.; Biamonte, J.; Kais, S.; Migdał, P., Degree distribution in quantum walks on complex networks, Phys. Rev. X, 3, 2013 · doi:10.1103/PhysRevX.3.041007
[156] Childs, A. M.; Goldstone, J., Spatial search by quantum walk, Phys. Rev. A, 70, 2004 · Zbl 1227.81156 · doi:10.1103/PhysRevA.70.022314
[157] Mülken, O.; Blumen, A., Continuous-time quantum walks: models for coherent transport on complex networks, Phys. Rep., 502, 37-87, 2011 · doi:10.1016/j.physrep.2011.01.002
[158] Venegas-Andraca, S. E., Quantum walks: a comprehensive review, Quantum Inf. Process., 11, 1015-106, 2012 · Zbl 1283.81040 · doi:10.1007/s11128-012-0432-5
[159] Portugal, R., Quantum Walks and Search Algorithms, 2013, Springer · Zbl 1275.81004
[160] Kadian, K.; Garhwal, S.; Kumar, A., Quantum walk and its application domains: a systematic review, Comput. Sci. Rev., 41, 2021 · Zbl 1486.68076 · doi:10.1016/j.cosrev.2021.100419
[161] Farhi, E.; Gutmann, S., Quantum computation and decision trees, Phys. Rev. A, 58, 915, 1998 · doi:10.1103/PhysRevA.58.915
[162] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry, vol 1, 1992, Elsevier
[163] Chakraborty, S.; Luh, K.; Roland, J’emie, How fast do quantum walks mix?, Phys. Rev. Lett., 124, 2020 · doi:10.1103/PhysRevLett.124.050501
[164] Chakraborty, S.; Luh, K.; Roland, J’emie, Analog quantum algorithms for the mixing of Markov chains, Phys. Rev. A, 102, 2020 · doi:10.1103/PhysRevA.102.022423
[165] Quintanilla, J.; Campo, V. L., Electron in a tangled chain: multifractality at the small-world critical point, Phys. Rev. B, 75, 2007 · doi:10.1103/PhysRevB.75.144204
[166] Mülken, O.; Pernice, V.; Blumen, A., Quantum transport on small-world networks: a continuous-time quantum walk approach, Phys. Rev. E, 76, 2007 · doi:10.1103/PhysRevE.76.051125
[167] Wang, Y.; Xu, X-J, Quantum transport with long-range steps on watts-strogatz networks, Int. J. Mod. Phys. C, 27, 2016 · doi:10.1142/S0129183116500157
[168] Xu, X-P; Li, W.; Liu, F., Coherent transport on Apollonian networks and continuous-time quantum walks, Phys. Rev. E, 78, 2008 · doi:10.1103/PhysRevE.78.052103
[169] Gualtieri, V.; Benedetti, C.; Paris, M. G A., Quantum-classical dynamical distance and quantumness of quantum walks, Phys. Rev. A, 102, 2020 · doi:10.1103/PhysRevA.102.012201
[170] Faccin, M.; Migdał, P.; Johnson, T. H.; Bergholm, V.; Biamonte, J. D., Community detection in quantum complex networks, Phys. Rev. X, 4, 2014 · doi:10.1103/PhysRevX.4.041012
[171] Izaac, J. A.; Zhan, X.; Bian, Z.; Wang, K.; Li, J.; Wang, J. B.; Xue, P., Centrality measure based on continuous-time quantum walks and experimental realization, Phys. Rev. A, 95, 2017 · doi:10.1103/PhysRevA.95.032318
[172] Whitfield, J. D.; Rodríguez-Rosario, C. A.; Aspuru-Guzik, A., Quantum stochastic walks: A generalization of classical random walks and quantum walks, Phys. Rev. A, 81, 2010 · doi:10.1103/PhysRevA.81.022323
[173] Caruso, F., Universally optimal noisy quantum walks on complex networks, New J. Phys., 16, 2014 · Zbl 1451.81284 · doi:10.1088/1367-2630/16/5/055015
[174] Novo, L.; Chakraborty, S.; Mohseni, M.; Neven, H.; Omar, Y., Systematic dimensionality reduction for quantum walks: optimal spatial search and transport on non-regular graphs, Sci. Rep., 5, 1-16, 2015 · doi:10.1038/srep13304
[175] Razzoli, L.; Bordone, P.; Paris, M. G A., Universality of the fully connected vertex in laplacian continuous-time quantum walk problems, J. Phys. A: Math. Theor., 55, 2022 · Zbl 1507.81151 · doi:10.1088/1751-8121/ac72d5
[176] Kay, A., Basics of perfect communication through quantum networks, Phys. Rev. A, 84, 2011 · doi:10.1103/PhysRevA.84.022337
[177] Godsil, C., State transfer on graphs, Discrete Math., 312, 129-47, 2012 · Zbl 1232.05123 · doi:10.1016/j.disc.2011.06.032
[178] Nikolopoulos, G. M., Quantum State Transfer and Network Engineering, 2014, Springer · Zbl 1303.81038
[179] Moutinho, J. P.; Melo, A.; Coutinho, B.; Kovács, I. A.; Omar, Y., Quantum link prediction in complex networks, Phys. Rev. A, 107, 2023 · doi:10.1103/PhysRevA.107.032605
[180] Sánchez-Burillo, E.; Duch, J.; Gómez-Gardenes, J.; Zueco, D., Quantum navigation and ranking in complex networks, Sci. Rep., 2, 1-8, 2012 · doi:10.1038/srep00605
[181] Moutinho, J. P.; Magano, D.; Coutinho, B., On the complexity of quantum link prediction in complex networks, Sci. Rep., 14, 1026, 2024 · doi:10.1038/s41598-023-49906-4
[182] Magano, D.; ao Moutinho, J.; Coutinho, B., On the quantum simulation of complex networks, SciPost Phys. Core, 6, 058, 2023 · doi:10.21468/SciPostPhysCore.6.3.058
[183] Plenio, M. B.; Huelga, S. F., Dephasing-assisted transport: quantum networks and biomolecules, New J. Phys., 10, 2008 · doi:10.1088/1367-2630/10/11/113019
[184] Cuadra, L.; Nieto-Borge, J. C., Modeling quantum dot systems as random geometric graphs with probability amplitude-based weighted links, Nanomaterials, 11, 375, 2021 · doi:10.3390/nano11020375
[185] Cuadra, L.; Nieto-Borge, J. C., Approaching disordered quantum dot systems by complex networks with spatial and physical-based constraints, Nanomaterials, 11, 2056, 2021 · doi:10.3390/nano11082056
[186] Rauer, B.; Erne, S.; Schweigler, T.; Cataldini, F.; Tajik, M.; Schmiedmayer, J., Recurrences in an isolated quantum many-body system, Science, 360, 307-10, 2018 · Zbl 1416.81075 · doi:10.1126/science.aan7938
[187] Ghosh, S.; Krisnanda, T.; Paterek, T.; Liew, T. C H., Realising and compressing quantum circuits with quantum reservoir computing, Commun. Phys., 4, 1-7, 2021 · doi:10.1038/s42005-021-00606-3
[188] Vasile, R.; Galve, F.; Zambrini, R., Spectral origin of non-Markovian open-system dynamics: a finite harmonic model without approximations, Phys. Rev. A, 89, 2014 · doi:10.1103/PhysRevA.89.022109
[189] Guarnieri, G.; Nokkala, J.; Schmidt, R.; Maniscalco, S.; Vacchini, B., Energy backflow in strongly coupled non-Markovian continuous-variable systems, Phys. Rev. A, 94, 2016 · doi:10.1103/PhysRevA.94.062101
[190] Nüßeler, A.; Tamascelli, D.; Smirne, A.; Lim, J.; Huelga, S. F.; Plenio, M. B., Fingerprint and universal markovian closure of structured bosonic environments, Phys. Rev. Lett., 129, 2022 · doi:10.1103/PhysRevLett.129.140604
[191] Nokkala, J.; Maniscalco, S.; Piilo, J., Non-Markovianity over ensemble averages in quantum complex networks, Open Syst. Inf. Dyn., 24, 2017 · Zbl 1381.81066 · doi:10.1142/S1230161217400182
[192] Nokkala, J.; Arzani, F.; Galve, F.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V., Reconfigurable optical implementation of quantum complex networks, New J. Phys., 20, 2018 · doi:10.1088/1367-2630/aabc77
[193] Renault, P.; Nokkala, J.; Treps, N.; Piilo, J.; Parigi, V., Spectral density and non markovianity measurements via graph state simulation, Quantum Information and Measurement, p W3A-2, 2021, Optica Publishing Group · doi:10.1364/QIM.2021.W3A.2
[194] Renault, P.; Nokkala, J.; Roeland, G.; Joly, N. Y.; Zambrini, R.; Maniscalco, S.; Piilo, J.; Treps, N.; Parigi, V., Experimental optical simulator of reconfigurable and complex quantum environment, PRX Quantum, 4, 2023 · doi:10.1103/PRXQuantum.4.040310
[195] Nokkala, J., Online quantum time series processing with random oscillator networks, Sci. Rep., 13, 7694, 2023 · doi:10.1038/s41598-023-34811-7
[196] Burgarth, D.; Maruyama, K.; Murphy, M.; Montangero, S.; Calarco, T.; Nori, F.; Plenio, M. B., Scalable quantum computation via local control of only two qubits, Phys. Rev. A, 81, 2010 · doi:10.1103/PhysRevA.81.040303
[197] Maruyama, K.; Burgarth, D., Gateway schemes of quantum control for spin networks, Electron Spin Resonance (ESR) Based Quantum Computing, 167-92, 2016, Springer · doi:10.1007/978-1-4939-3658-8_6
[198] Killoran, N.; Bromley, T. R.; Miguel Arrazola, J.; Schuld, M.; Quesada, N.; Lloyd, S., Continuous-variable quantum neural networks, Phys. Rev. Res., 1, 2019 · doi:10.1103/PhysRevResearch.1.033063
[199] Beer, K.; Bondarenko, D.; Farrelly, T.; Osborne, T. J.; Salzmann, R.; Scheiermann, D.; Wolf, R., Training deep quantum neural networks, Nat. Commun., 11, 808, 2020 · doi:10.1038/s41467-020-14454-2
[200] Abbas, A.; Sutter, D.; Zoufal, C.; Lucchi, A.; Figalli, A.; Woerner, S., The power of quantum neural networks, Nat. Comput. Sci., 1, 403-9, 2021 · doi:10.1038/s43588-021-00084-1
[201] Kwak, Y.; Yun, W. J.; Jung, S.; Kim, J., Quantum neural networks: concepts, applications and challenges, 413-6, 2021, IEEE · doi:10.1109/ICUFN49451.2021.9528698
[202] Burgarth, D.; Maruyama, K., Indirect Hamiltonian identification through a small gateway, New J. Phys., 11, 2009 · doi:10.1088/1367-2630/11/10/103019
[203] Burgarth, D.; Maruyama, K.; Nori, F., Indirect quantum tomography of quadratic Hamiltonians, New J. Phys., 13, 2011 · doi:10.1088/1367-2630/13/1/013019
[204] Tamascelli, D.; Benedetti, C.; Olivares, S.; Paris, M. G A., Characterization of qubit chains by Feynman probes, Phys. Rev. A, 94, 2016 · doi:10.1103/PhysRevA.94.042129
[205] Seveso, L.; Benedetti, C.; Paris, M. G A., The walker speaks its graph: global and nearly-local probing of the tunnelling amplitude in continuous-time quantum walks, J. Phys. A: Math. Theor., 52, 2019 · Zbl 1507.82011 · doi:10.1088/1751-8121/ab0195
[206] Tufarelli, T.; Ferraro, A.; Kim, M. S.; Bose, S., Reconstructing the quantum state of oscillator networks with a single qubit, Phys. Rev. A, 85, 2012 · doi:10.1103/PhysRevA.85.032334
[207] Moore, D. W.; Tufarelli, T.; Paternostro, M.; Ferraro, A., Quantum state reconstruction of an oscillator network in an optomechanical setting, Phys. Rev. A, 94, 2016 · doi:10.1103/PhysRevA.94.053811
[208] Kato, Y.; Yamamoto, N., Structure identification and state initialization of spin networks with limited access, New J. Phys., 16, 2014 · doi:10.1088/1367-2630/16/2/023024
[209] Nokkala, J2018Quantum complex networksPhD ThesisUniversity of Turku
[210] Luca Giorgi, G.; Galve, F.; Zambrini, R., Probing the spectral density of a dissipative qubit via quantum synchronization, Phys. Rev. A, 94, 2016 · doi:10.1103/PhysRevA.94.052121
[211] Cardillo, A.; Galve, F.; Zueco, D.; Gómez-Gardenes, J., Information sharing in quantum complex networks, Phys. Rev. A, 87, 2013 · doi:10.1103/PhysRevA.87.052312
[212] Nokkala, J.; Maniscalco, S.; Piilo, J., Local probe for connectivity and coupling strength in quantum complex networks, Sci. Rep., 8, 1-8, 2018 · doi:10.1038/s41598-018-30863-2
[213] Nokkala, J.; Piilo, J.; Bianconi, G., Probing the spectral dimension of quantum network geometries, J. Phys. Complex., 2, 2020 · doi:10.1088/2632-072X/abaf9b
[214] Zimboras, Z.; Faccin, M.; Kadar, Z.; Whitfield, J. D.; Lanyon, B. P.; Biamonte, J., Quantum transport enhancement by time-reversal symmetry breaking, Sci. Rep., 3, 2361, 2013 · doi:10.1038/srep02361
[215] Cameron, S.; Fehrenbach, S.; Granger, L.; Hennigh, O.; Shrestha, S.; Tamon, C., Universal state transfer on graphs, Linear Algebr. Appl., 455, 115-42, 2014 · Zbl 1291.05118 · doi:10.1016/j.laa.2014.05.004
[216] Lu, D., Chiral quantum walks, Phys. Rev. A, 93, 2016 · doi:10.1103/PhysRevA.93.042302
[217] Tödtli, B.; Laner, M.; Semenov, J.; Paoli, B.; Blattner, M.; Kunegis, J., Continuous-time quantum walks on directed bipartite graphs, Phys. Rev. A, 94, 2016 · doi:10.1103/PhysRevA.94.052338
[218] Frigerio, M.; Benedetti, C.; Olivares, S.; Paris, M. G A., Generalized quantum-classical correspondence for random walks on graphs, Phys. Rev. A, 104, 2021 · doi:10.1103/PhysRevA.104.L030201
[219] Frigerio, M.; Benedetti, C.; Olivares, S.; Paris, M. G A., Quantum-classical distance as a tool to design optimal chiral quantum walks, Phys. Rev. A, 105, 2022 · doi:10.1103/PhysRevA.105.032425
[220] Frigerio, M.; Paris, M. G A., Swift chiral quantum walks, Linear Algebr. Appl., 673, 28-45, 2023 · Zbl 1515.81055 · doi:10.1016/j.laa.2023.05.007
[221] Kryukov, A.; Abramov, R.; Fedichkin, L. E.; Alodjants, A.; Melnikov, A. A., Supervised graph classification for chiral quantum walks, Phys. Rev. A, 105, 2022 · doi:10.1103/PhysRevA.105.022208
[222] Novo, L.; Ribeiro, S., Floquet engineering of continuous-time quantum walks: toward the simulation of complex and next-nearest-neighbor couplings, Phys. Rev. A, 103, 2021 · doi:10.1103/PhysRevA.103.042219
[223] Chakraborty, S.; Novo, L.; Di Giorgio, S.; Omar, Y., Optimal quantum spatial search on random temporal networks, Phys. Rev. Lett., 119, 2017 · doi:10.1103/PhysRevLett.119.220503
[224] Benedetti, C.; Rossi, M. A C.; Paris, M. G A., Continuous-time quantum walks on dynamical percolation graphs, Europhys. Lett., 124, 2019 · doi:10.1209/0295-5075/124/60001
[225] Herrman, R.; Humble, T. S., Continuous-time quantum walks on dynamic graphs, Phys. Rev. A, 100, 2019 · doi:10.1103/PhysRevA.100.012306
[226] Wong, T. G., Isolated vertices in continuous-time quantum walks on dynamic graphs, Phys. Rev. A, 100, 2019 · doi:10.1103/PhysRevA.100.062325
[227] Mülken, O., Enhanced quantum transport in multiplex networks, J. Stat. Phys., 162, 644-51, 2016 · Zbl 1334.82055 · doi:10.1007/s10955-015-1434-3
[228] Darázs, Z.; Anishchenko, A.; Kiss, T.; Blumen, A.; Mülken, O., Transport properties of continuous-time quantum walks on Sierpinski fractals, Phys. Rev. E, 90, 2014 · doi:10.1103/PhysRevE.90.032113
[229] Xu, X-Y; Wang, X-W; Chen, D-Y; Smith, C. M.; Jin, X-M, Quantum transport in fractal networks, Nat. Photon., 15, 703-10, 2021 · doi:10.1038/s41566-021-00845-4
[230] Patel, A.; Raghunathan, K. S., Search on a fractal lattice using a quantum random walk, Phys. Rev. A, 86, 2012 · doi:10.1103/PhysRevA.86.012332
[231] Tamegai, S.; Watabe, S.; Nikuni, T., Spatial search on Sierpinski carpet using quantum walk, J. Phys. Soc. Japan, 87, 2018 · doi:10.7566/JPSJ.87.085003
[232] Sato, R.; Nikuni, T.; Watabe, S., Scaling hypothesis of a spatial search on fractal lattices using a quantum walk, Phys. Rev. A, 101, 2020 · doi:10.1103/PhysRevA.101.022312
[233] Bellomo, B.; Giorgi, G. L.; Palma, G. M.; Zambrini, R., Quantum synchronization as a local signature of super-and subradiance, Phys. Rev. A, 95, 2017 · doi:10.1103/PhysRevA.95.043807
[234] Mujal, P.; Martínez-Pe na, R.; Nokkala, J.; García-Beni, J.; Luca Giorgi, G.; Soriano, M. C.; Zambrini, R., Opportunities in quantum reservoir computing and extreme learning machines, Adv. Quantum Technol., 4, 2021 · doi:10.1002/qute.202100027
[235] Garrison, J. R.; Grover, T., Does a single eigenstate encode the full Hamiltonian?, Phys. Rev. X, 8, 2018 · doi:10.1103/PhysRevX.8.021026
[236] Qi, X-L; Ranard, D., Determining a local Hamiltonian from a single eigenstate, Quantum, 3, 159, 2019 · doi:10.22331/q-2019-07-08-159
[237] Melo, B.; Brandão, I.; Tomei, C.; Guerreiro, T., Directed graphs and interferometry, J. Opt. Soc. Am. B, 37, 2199-208, 2020 · doi:10.1364/JOSAB.394110
[238] Krenn, M.; Gu, X.; Zeilinger, A., Quantum experiments and graphs: multiparty states as coherent superpositions of perfect matchings, Phys. Rev. Lett., 119, 2017 · doi:10.1103/PhysRevLett.119.240403
[239] Gu, X.; Erhard, M.; Zeilinger, A.; Krenn, M., Quantum experiments and graphs ii: Quantum interference, computation and state generation, Proc. Natl Acad. Sci., 116, 4147-55, 2019 · Zbl 1416.81029 · doi:10.1073/pnas.1815884116
[240] Gu, X.; Chen, L.; Zeilinger, A.; Krenn, M., Quantum experiments and graphs. III. High-dimensional and multiparticle entanglement, Phys. Rev. A, 99, 2019 · doi:10.1103/PhysRevA.99.032338
[241] Kottos, T.; Smilansky, U., Periodic orbit theory and spectral statistics for quantum graphs, Ann. Phys., NY, 274, 76-124, 1999 · Zbl 1036.81014 · doi:10.1006/aphy.1999.5904
[242] Kottos, T.; Smilansky, U., Chaotic scattering on graphs, Phys. Rev. Lett., 85, 968, 2000 · doi:10.1103/PhysRevLett.85.968
[243] Mugnolo, D., Semigroup Methods for Evolution Equations on Networks, 2014, Springer · Zbl 1306.47001
[244] Kurasov, P.; Stenberg, F., On the inverse scattering problem on branching graphs, J. Phys. A: Math. Gen., 35, 101, 2001 · Zbl 1012.81053 · doi:10.1088/0305-4470/35/1/309
[245] Berkolaiko, G.; Kennedy, J. B.; Kurasov, P.; Mugnolo, D., Edge connectivity and the spectral gap of combinatorial and quantum graphs, J. Phys. A: Math. Theor., 50, 2017 · Zbl 1456.81193 · doi:10.1088/1751-8121/aa8125
[246] Berkolaiko, G.; Kuchment, P., Introduction to Quantum Graphs, 186, 2013, American Mathematical Society · Zbl 1318.81005
[247] Kuchment, P., Quantum graphs: I. Some basic structures, Waves Random Media, 14, S107, 2003 · Zbl 1063.81058 · doi:10.1088/0959-7174/14/1/014
[248] Bagrov, A. A.; Danilov, M.; Brener, S.; Harland, M.; Lichtenstein, A. I.; Katsnelson, M. I., Detecting quantum critical points in the t-t’ fermi-Hubbard model via complex network theory, Sci. Rep., 10, 1-9, 2020 · doi:10.1038/s41598-020-77513-0
[249] García-Pérez, G.; Rossi, M. A C.; Sokolov, B.; Borrelli, E-M; Maniscalco, S., Pairwise tomography networks for many-body quantum systems, Phys. Rev. Res., 2, 2020 · doi:10.1103/PhysRevResearch.2.023393
[250] Llodrà, GGiorgi, G LZambrini, R2022Detecting the topological phase of the Kitaev model via network analysis(available at: https://digital.csic.es/handle/10261/267457)
[251] Walschaers, M.; Sundar, B.; Treps, N.; Carr, L. D.; Parigi, V., Emergent complex quantum networks in continuous-variables non-gaussian states, Quantum Sci. Technol., 8, 2023 · doi:10.1088/2058-9565/accdfd
[252] Madsen, L. S., Quantum computational advantage with a programmable photonic processor, Nature, 606, 75-81, 2022 · doi:10.1038/s41586-022-04725-x
[253] Bartlett, S. D.; Sanders, B. C.; Braunstein, S. L.; Nemoto, K., Efficient classical simulation of continuous variable quantum information processes, Phys. Rev. Lett., 88, 2002 · doi:10.1103/PhysRevLett.88.097904
[254] Centrone, F.; Grosshans, F.; Parigi, V., Cost and routing of continuous-variable quantum networks, Phys. Rev. A, 108, 2023 · doi:10.1103/PhysRevA.108.042615
[255] Gu, M.; Weedbrook, C.; Menicucci, N. C.; Ralph, T. C.; van Loock, P., Quantum computing with continuous-variable clusters, Phys. Rev. A, 79, 2009 · doi:10.1103/PhysRevA.79.062318
[256] Chou, C-P, Network robustness: detecting topological quantum phases, Sci. Rep., 4, 1-6, 2014 · doi:10.1038/srep07526
[257] Evenbly, G.; Vidal, G., Tensor network states and geometry, J. Stat. Phys., 145, 891-918, 2011 · Zbl 1231.82021 · doi:10.1007/s10955-011-0237-4
[258] Evenbly, G.; Vidal, G., Tensor network renormalization, Phys. Rev. Lett., 115, 2015 · doi:10.1103/PhysRevLett.115.180405
[259] Orús, R., A practical introduction to tensor networks: matrix product states and projected entangled pair states, Ann. Phys., NY, 349, 117-58, 2014 · Zbl 1343.81003 · doi:10.1016/j.aop.2014.06.013
[260] Biamonte, J., Lectures on quantum tensor networks, 2019
[261] Sun, H.; Kumar Panda, R.; Verdel, R.; Rodriguez, A.; Dalmonte, M.; Bianconi, G., Phys. Rev. E, 109, 2023 · doi:10.1103/PhysRevE.109.054305
[262] Ataman, S., Field operator transformations in quantum optics using a novel graphical method with applications to beam splitters and interferometers, Eur. Phys. J. D, 68, 1-6, 2014 · doi:10.1140/epjd/e2014-50448-0
[263] Ataman, S., The quantum optical description of three experiments involving non-linear optics using a graphical method, Eur. Phys. J. D, 69, 1-6, 2015 · doi:10.1140/epjd/e2014-50693-1
[264] Ataman, S., A graphical method in quantum optics, J. Phys. Commun., 2, 2018 · doi:10.1088/2399-6528/aab50f
[265] Gu, X.; Chen, L.; Krenn, M., Quantum experiments and hypergraphs: multiphoton sources for quantum interference, quantum computation and quantum entanglement, Phys. Rev. A, 101, 2020 · doi:10.1103/PhysRevA.101.033816
[266] Keevash, P.; Mycroft, R., A Geometric Theory for Hypergraph Matching, 2014, American Mathematical Society
[267] Krenn, M.; Kottmann, J. S.; Tischler, N.; Aspuru-Guzik, A., Conceptual understanding through efficient automated design of quantum optical experiments, Phys. Rev. X, 11, 2021 · doi:10.1103/PhysRevX.11.031044
[268] Menicucci, N. C.; Flammia, S. T.; van Loock, P., Graphical calculus for gaussian pure states, Phys. Rev. A, 83, 2011 · doi:10.1103/PhysRevA.83.042335
[269] Adcock, J. C.; Morley-Short, S.; Dahlberg, A.; Silverstone, J. W., Mapping graph state orbits under local complementation, Quantum, 4, 305, 2020 · doi:10.22331/q-2020-08-07-305
[270] Raussendorf, R.; Browne, D. E.; Briegel, H. J., Measurement-based quantum computation on cluster states, Phys. Rev. A, 68, 2003 · doi:10.1103/PhysRevA.68.022312
[271] Browne, D. E.; Kashefi, E.; Mhalla, M.; Perdrix, S., Generalized flow and determinism in measurement-based quantum computation, New J. Phys., 9, 250, 2007 · doi:10.1088/1367-2630/9/8/250
[272] Booth, R. I.; Markham, D., Flow conditions for continuous variable measurement-based quantum computing, Quantum, 7, 1146, 2023 · doi:10.22331/q-2023-10-19-1146
[273] Hein, M.; Dür, W.; Eisert, J.; Raussendorf, R.; Nest, M.; Briegel, H-J, Entanglement in graph states and its applications, 2006
[274] Anders, S.; Briegel, H. J., Fast simulation of stabilizer circuits using a graph-state representation, Phys. Rev. A, 73, 2006 · doi:10.1103/PhysRevA.73.022334
[275] Gidney, C., Stim: a fast stabilizer circuit simulator, Quantum, 5, 497, 2021 · doi:10.22331/q-2021-07-06-497
[276] Qiskit Contributors2019Qiskit: an open-source framework for quantum computing(available at: doi:10.1103/10.5281/zenodo.2562110)(Accessed March 2019)
[277] Quantum AI team and Cirq Developers2020Cirq(available at: doi:10.1103/10.5281/zenodo.4062499)(Accessed October 2020)
[278] Hu, A. T.; Khesin, A. B., Improved graph formalism for quantum circuit simulation, Phys. Rev. A, 105, 2022 · doi:10.1103/PhysRevA.105.022432
[279] Flors Mor-Ruiz, M.; Dür, W., Noisy stabilizer formalism, Phys. Rev. A, 107, 2023 · doi:10.1103/PhysRevA.107.032424
[280] Coecke, B.; Duncan, R., Interacting quantum observables, International Colloquium on Automata, Languages and Programming, 298-310, 2008, Springer · Zbl 1155.81316 · doi:10.1007/978-3-540-70583-3_25
[281] Coecke, B.; Duncan, R., Interacting quantum observables: categorical algebra and diagrammatics, New J. Phys., 13, 2011 · Zbl 1448.81025 · doi:10.1088/1367-2630/13/4/043016
[282] Duncan, R.; Kissinger, A.; Perdrix, S.; Van De Wetering, J., Graph-theoretic simplification of quantum circuits with the ZX-calculus, Quantum, 4, 279, 2020 · doi:10.22331/q-2020-06-04-279
[283] Backens, M.; Miller-Bakewell, H.; de Felice, G.; Lobski, L.; van de Wetering, J., There and back again: a circuit extraction tale, Quantum, 5, 421, 2021 · doi:10.22331/q-2021-03-25-421
[284] Kissinger, A.; van de Wetering, J., Reducing the number of non-Clifford gates in quantum circuits, Phys. Rev. A, 102, 2020 · doi:10.1103/PhysRevA.102.022406
[285] Sansavini, F.; Parigi, V., Continuous variables graph states shaped as complex networks: optimization and manipulation, Entropy, 22, 26, 2019 · doi:10.3390/e22010026
[286] Hahn, F.; Pappa, A.; Eisert, J., Quantum network routing and local complementation, npj Quantum Inf., 5, 1-7, 2019 · doi:10.1038/s41534-019-0191-6
[287] Epping, M.; Kampermann, H.; Bruß, D., Large-scale quantum networks based on graphs, New J. Phys., 18, 2016 · doi:10.1088/1367-2630/18/5/053036
[288] Mor-Ruiz, M. F.; Dür, W., Influence of noise in entanglement-based quantum networks, 2023
[289] Azuma, K.; Tamaki, K.; Lo, H-K, All-photonic quantum repeaters, Nat. Commun., 6, 1-7, 2015 · doi:10.1038/ncomms7787
[290] Pant, M.; Krovi, H.; Englund, D.; Guha, S., Rate-distance tradeoff and resource costs for all-optical quantum repeaters, Phys. Rev. A, 95, 2017 · doi:10.1103/PhysRevA.95.012304
[291] Menicucci, N. C.; Flammia, S. T.; Zaidi, H.; Pfister, O., Ultracompact generation of continuous-variable cluster states, Phys. Rev. A, 76, 2007 · doi:10.1103/PhysRevA.76.010302
[292] Aolita, L.; Roncaglia, A. J.; Ferraro, A.; Acín, A., Gapped two-body Hamiltonian for continuous-variable quantum computation, Phys. Rev. Lett., 106, 2011 · doi:10.1103/PhysRevLett.106.090501
[293] Bianconi, G.; Barabási, A-L, Competition and multiscaling in evolving networks, Europhys. Lett., 54, 436, 2001 · doi:10.1209/epl/i2001-00260-6
[294] Bianconi, G., Growing Cayley trees described by a Fermi distribution, Phys. Rev. E, 66, 2002 · doi:10.1103/PhysRevE.66.036116
[295] Bianconi, G.; Rahmede, C., Emergent hyperbolic network geometry, Sci. Rep., 7, 2017 · doi:10.1038/srep41974
[296] Bianconi, G.; Rahmede, C., Network geometry with flavor: from complexity to quantum geometry, Phys. Rev. E, 93, 2016 · doi:10.1103/PhysRevE.93.032315
[297] Park, J.; Newman, M. E J., Statistical mechanics of networks, Phys. Rev. E, 70, 2004 · doi:10.1103/PhysRevE.70.066117
[298] Garlaschelli, D.; Loffredo, M. I., Generalized Bose-Fermi statistics and structural correlations in weighted networks, Phys. Rev. Lett., 102, 2009 · doi:10.1103/PhysRevLett.102.038701
[299] Penrose, R1972On the nature of quantum geometryMagic Without Magicpp 33354pp 333-54
[300] Bianconi, G., Quantum statistics in complex networks, Phys. Rev. E, 66, 2002 · doi:10.1103/PhysRevE.66.056123
[301] Mulder, D.; Bianconi, G., Network geometry and complexity, J. Stat. Phys., 173, 783-805, 2018 · Zbl 1476.90072 · doi:10.1007/s10955-018-2115-9
[302] Surya, S., The causal set approach to quantum gravity, Living Rev. Relativ., 22, 1-75, 2019 · Zbl 1442.83029 · doi:10.1007/s41114-019-0023-1
[303] Krioukov, D.; Kitsak, M.; Sinkovits, R. S.; Rideout, D.; Meyer, D.; Boguná, M., Network cosmology, Sci. Rep., 2, 793, 2012 · doi:10.1038/srep00793
[304] Jahn, A.; Eisert, J., Holographic tensor network models and quantum error correction: a topical review, Quantum Sci. Technol., 6, 2021 · doi:10.1088/2058-9565/ac0293
[305] Sasakura, N., Tensor model for gravity and orientability of manifold, Mod. Phys. Lett. A, 6, 2613-23, 1991 · Zbl 1020.83542 · doi:10.1142/S0217732391003055
[306] Jahn, A.; Zimborás, Z.; Eisert, J., Tensor network models of AdS/qCFT, Quantum, 6, 643, 2022 · doi:10.22331/q-2022-02-03-643
[307] Trugenberger, C. A., Combinatorial quantum gravity: geometry from random bits, J. High Energy Phys., JHEP09(2017)045, 2017 · Zbl 1382.83046 · doi:10.1007/JHEP09(2017)045
[308] Trugenberger, C. A., Quantum gravity as an information network self-organization of a 4D Universe, Phys. Rev. D, 92, 2015 · doi:10.1103/PhysRevD.92.084014
[309] Kelly, C.; Trugenberger, C. A.; Biancalana, F., Self-assembly of geometric space from random graphs, Class. Quantum Grav., 36, 2019 · Zbl 1503.83005 · doi:10.1088/1361-6382/ab1c7d
[310] Trugenberger, C. A., Combinatorial quantum gravity and emergent 3d quantum behaviour, Universe, 9, 499, 2023 · doi:10.3390/universe9120499
[311] Kleftogiannis, I.; Amanatidis, I., Physics in nonfixed spatial dimensions via random networks, Phys. Rev. E, 105, 2022 · doi:10.1103/PhysRevE.105.024141
[312] Chen, S.; Plotkin, S. S., Statistical mechanics of graph models and their implications for emergent spacetime manifolds, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.084011
[313] Akara-pipattana, P.; Chotibut, T.; Evnin, O., The birth of geometry in exponential random graphs, J. Phys. A: Math. Theor., 54, 2021 · Zbl 1520.05085 · doi:10.1088/1751-8121/ac2474
[314] Kleftogiannis, I.; Amanatidis, I., Emergent spacetime from purely random structures, 2022
[315] Eichhorn, A.; Pauly, M., A sprinkling of hybrid-signature discrete spacetimes in real-world networks, 2021
[316] Bianconi, G., Size of quantum networks, Phys. Rev. E, 67, 2003 · doi:10.1103/PhysRevE.67.056119
[317] Ergün, G.; Rodgers, G. J., Growing random networks with fitness, Physica A, 303, 261-72, 2002 · Zbl 0978.90012 · doi:10.1016/S0378-4371(01)00408-3
[318] Borgs, C.; Chayes, J.; Daskalakis, C.; Roch, S., First to market is not everything: an analysis of preferential attachment with fitness, 135-44, 2007 · Zbl 1232.68018 · doi:10.1145/1250790.1250812
[319] Ferretti, L.; Bianconi, G., Dynamics of condensation in growing complex networks, Phys. Rev. E, 78, 2008 · doi:10.1103/PhysRevE.78.056102
[320] Dereich, S.; Mailler, C.; Mörters, P., Nonextensive condensation in reinforced branching processes, Ann. Appl. Probab., 27, 2539-68, 2017 · Zbl 1373.60146 · doi:10.1214/16-AAP1268
[321] Iyer, T., Degree distributions in recursive trees with fitnesses, Adv. Appl. Probab., 55, 407-43, 2023 · Zbl 1512.90060 · doi:10.1017/apr.2022.40
[322] Fountoulakis, N.; Iyer, T., Condensation phenomena in preferential attachment trees with neighbourhood influence, Electron. J. Probab., 27, 1-49, 2022 · Zbl 1492.90029 · doi:10.1214/22-EJP787
[323] Alberto Javarone, M.; Armano, G., Quantum-classical transitions in complex networks, J. Stat. Mech., 2013, 2013 · doi:10.1088/1742-5468/2013/04/P04019
[324] Millán, A. P.; Ghorbanchian, R.; Defenu, N‘o; Battiston, F.; Bianconi, G., Local topological moves determine global diffusion properties of hyperbolic higher-order networks, Phys. Rev. E, 104, 2021 · doi:10.1103/PhysRevE.104.054302
[325] Cinardi, N.; Rapisarda, A.; Bianconi, G., Quantum statistics in network geometry with fractional flavor, J. Stat. Mech., 2019, 2019 · Zbl 1456.81483 · doi:10.1088/1742-5468/ab3ccd
[326] Bianconi, G.; Rahmede, C.; Wu, Z., Complex quantum network geometries: Evolution and phase transitions, Phys. Rev. E, 92, 2015 · doi:10.1103/PhysRevE.92.022815
[327] Fountoulakis, N.; Iyer, T.; Mailler, C.; Sulzbach, H., Dynamical models for random simplicial complexes, Ann. Appl. Probab., 32, 2860-913, 2022 · Zbl 1498.90044 · doi:10.1214/21-AAP1752
[328] Ambjørn, J.; Jurkiewicz, J.; Loll, R., Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett., 93, 2004 · doi:10.1103/PhysRevLett.93.131301
[329] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity: an Elementary Introduction to Quantum Gravity and Spinfoam Theory, 2015, Cambridge University Press · Zbl 1432.81065
[330] Oriti, D., Approaches to Quantum Gravity: Toward a new Understanding of Space, Time and Matter, 2009, Cambridge University Press
[331] Benedetti, D., Fractal properties of quantum spacetime, Phys. Rev. Lett., 102, 2009 · doi:10.1103/PhysRevLett.102.111303
[332] Benedetti, D.; Henson, J., Spectral geometry as a probe of quantum spacetime, Phys. Rev. D, 80, 2009 · doi:10.1103/PhysRevD.80.124036
[333] Calcagni, G.; Eichhorn, A.; Saueressig, F., Probing the quantum nature of spacetime by diffusion, Phys. Rev. D, 87, 2013 · doi:10.1103/PhysRevD.87.124028
[334] Reitz, M.; Bianconi, G., The higher-order spectrum of simplicial complexes: a renormalization group approach, J. Phys. A: Math. Theor., 53, 2020 · Zbl 1519.82042 · doi:10.1088/1751-8121/ab9338
[335] Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S., Quantum machine learning, Nature, 549, 195-202, 2017 · doi:10.1038/nature23474
[336] Bianconi, G., Dirac gauge theory for topological spinors in 3+ 1 dimensional networks, J. Phys. A: Math. Theor., 56, 2023 · Zbl 1525.83012 · doi:10.1088/1751-8121/acdc6a
[337] Bianconi, G., The mass of simple and higher-order networks, J. Phys. A: Math. Theor., 57, 2023 · Zbl 1536.81089 · doi:10.1088/1751-8121/ad0fb5
[338] Calmon, L.; Restrepo, J. G.; Torres, J. J.; Bianconi, G., Dirac synchronization is rhythmic and explosive, Commun. Phys., 5, 253, 2022 · doi:10.1038/s42005-022-01024-9
[339] Calmon, L.; Krishnagopal, S.; Bianconi, G., Local Dirac synchronization on networks, Chaos, 33, 2023 · Zbl 07881905 · doi:10.1063/5.0132468
[340] Giambagli, L.; Calmon, L.; Muolo, R.; Carletti, T.; Bianconi, G., Diffusion-driven instability of topological signals coupled by the Dirac operator, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.064314
[341] Calmon, L.; Schaub, M. T.; Bianconi, G., Dirac signal processing of higher-order topological signals, New J. Phys., 25, 2023 · Zbl 07869190 · doi:10.1088/1367-2630/acf33c
[342] Gong, X.; Higham, D. J.; Zygalakis, K., Directed network Laplacians and random graph models, R. Soc. Open Sci., 8, 2021 · doi:10.1098/rsos.211144
[343] Shubin, M. A., Discrete magnetic Laplacian, Commun. Math. Phys., 164, 259-75, 1994 · Zbl 0811.46079 · doi:10.1007/BF02101702
[344] Smilansky, U., Quantum chaos on discrete graphs, J. Phys. A: Math. Theor., 40, F621, 2007 · Zbl 1124.81024 · doi:10.1088/1751-8113/40/27/F07
[345] Fanuel, M.; Alaiz, C. M.; Suykens, J. A K., Magnetic eigenmaps for community detection in directed networks, Phys. Rev. E, 95, 2017 · doi:10.1103/PhysRevE.95.022302
[346] Fanuel, M.; Alaíz, C. M.; Fernández, A.; Suykens, J. A K., Magnetic eigenmaps for the visualization of directed networks, Appl. Comput. Harmon. Anal., 44, 189-99, 2018 · Zbl 1371.05278 · doi:10.1016/j.acha.2017.01.004
[347] de Resende, B. M F.; da. Costa, L., Characterization and comparison of large directed networks through the spectra of the magnetic Laplacian, Chaos, 30, 2020 · Zbl 1445.05044 · doi:10.1063/5.0006891
[348] Böttcher, L.; Porter, M. A., Complex networks with complex weights, Phys. Rev. E, 109, 2024 · doi:10.1103/PhysRevE.109.024314
[349] Tian, Y.; Lambiotte, R., Structural balance and random walks on complex networks with complex weights, 2023
[350] Torres, J. J.; Manzano, D., Dissipative quantum Hopfield network: a numerical analysis, 2023
[351] MacArthur, B. D.; Sánchez-García, R. J.; Anderson, J. W., Symmetry in complex networks, Discrete Appl. Math., 156, 3525-31, 2008 · Zbl 1168.05058 · doi:10.1016/j.dam.2008.04.008
[352] Sánchez-García, R. J., Exploiting symmetry in network analysis, Commun. Phys., 3, 1-15, 2020 · doi:10.1038/s42005-020-0345-z
[353] Rossi, L.; Torsello, A.; Hancock, E. R.; Wilson, R. C., Characterizing graph symmetries through quantum Jensen-Shannon divergence, Phys. Rev. E, 88, 2013 · doi:10.1103/PhysRevE.88.032806
[354] Rossi, L.; Torsello, A.; Hancock, E. R., Approximate axial symmetries from continuous time quantum walks, 144-52, 2012, Springer · doi:10.1007/978-3-642-34166-3_16
[355] Brin, S.; Page, L., The anatomy of a large-scale hypertextual web search engine, Comput. Netw. ISDN Syst., 30, 107-17, 1998 · doi:10.1016/S0169-7552(98)00110-X
[356] Garnerone, S.; Zanardi, P.; Lidar, D. A., Adiabatic quantum algorithm for search engine ranking, Phys. Rev. Lett., 108, 2012 · doi:10.1103/PhysRevLett.108.230506
[357] Davide Paparo, G.; Martin-Delgado, M. A., Google in a quantum network, Sci. Rep., 2, 1-12, 2012 · doi:10.1038/srep00444
[358] Davide Paparo, G.; Müller, M.; Comellas, F.; Martin-Delgado, M. A., Quantum google in a complex network, Sci. Rep., 3, 1-16, 2013 · doi:10.1038/srep02773
[359] Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B., Comparing classical and quantum pageRanks, Quantum Inf. Process., 16, 1-22, 2017 · Zbl 1373.81114 · doi:10.1007/s11128-016-1456-z
[360] Perra, N.; Zlatić, V.; Chessa, A.; Conti, C.; Donato, D.; Caldarelli, G., PageRank equation and localization in the WWW, Europhys. Lett., 88, 2009 · doi:10.1209/0295-5075/88/48002
[361] Wang, K.; Shi, Y.; Xiao, L.; Wang, J.; Joglekar, Y. N.; Xue, P., Experimental realization of continuous-time quantum walks on directed graphs and their application in PageRank, Optica, 7, 1524-30, 2020 · doi:10.1364/OPTICA.396228
[362] Anand, K.; Bianconi, G., Gibbs entropy of network ensembles by cavity methods, Phys. Rev. E, 82, 2010 · doi:10.1103/PhysRevE.82.011116
[363] Bianconi, G., Grand canonical ensembles of sparse networks and Bayesian inference, Entropy, 24, 633, 2022 · doi:10.3390/e24050633
[364] Anand, K.; Bianconi, G.; Severini, S., Shannon and von Neumann entropy of random networks with heterogeneous expected degree, Phys. Rev. E, 83, 2011 · doi:10.1103/PhysRevE.83.036109
[365] De Domenico, M.; Solé-Ribalta, A.; Cozzo, E.; Kivelä, M.; Moreno, Y.; Porter, M. A.; Gómez, S.; Arenas, A., Mathematical formulation of multilayer networks, Phys. Rev. X, 3, 2013 · doi:10.1103/PhysRevX.3.041022
[366] De Domenico, M.; Nicosia, V.; Arenas, A.; Latora, V., Structural reducibility of multilayer networks, Nat. Commun., 6, 1-9, 2015 · doi:10.1038/ncomms7864
[367] Minello, G.; Rossi, L.; Torsello, A., On the von Neumann entropy of graphs, J. Complex Netw., 7, 491-514, 2019 · Zbl 1472.05141 · doi:10.1093/comnet/cny028
[368] De Domenico, M.; Biamonte, J., Spectral entropies as information-theoretic tools for complex network comparison, Phys. Rev. X, 6, 2016 · doi:10.1103/PhysRevX.6.041062
[369] Villegas, P.; Gabrielli, A.; Santucci, F.; Caldarelli, G.; Gili, T., Laplacian paths in complex networks: Information core emerges from entropic transitions, Phys. Rev. Res., 4, 2022 · doi:10.1103/PhysRevResearch.4.033196
[370] Baccini, F.; Geraci, F.; Bianconi, G., Weighted simplicial complexes and their representation power of higher-order network data and topology, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.034319
[371] Garnerone, S.; Giorda, P.; Zanardi, P., Bipartite quantum states and random complex networks, New J. Phys., 14, 2012 · Zbl 1448.81040 · doi:10.1088/1367-2630/14/1/013011
[372] Chowdhury, D.; Georges, A.; Parcollet, O.; Sachdev, S., Sachdev-Ye-Kitaev models and beyond: window into non-Fermi liquids, Rev. Mod. Phys., 94, 2022 · doi:10.1103/RevModPhys.94.035004
[373] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.106002
[374] Gühne, O.; Cuquet, M.; Steinhoff, F. E S.; Moroder, T.; Rossi, M.; Bruß, D.; Kraus, B.; Macchiavello, C., Entanglement and nonclassical properties of hypergraph states, J. Phys. A: Math. Theor., 47, 2014 · Zbl 1301.81024 · doi:10.1088/1751-8113/47/33/335303
[375] Rossi, M.; Huber, M.; Bruß, D.; Macchiavello, C., Quantum hypergraph states, New J. Phys., 15, 2013 · Zbl 1451.81103 · doi:10.1088/1367-2630/15/11/113022
[376] Tang, E.; Agudo-Canalejo, J.; Golestanian, R., Topology protects chiral edge currents in stochastic systems, Phys. Rev. X, 11, 2021 · doi:10.1103/PhysRevX.11.031015
[377] Yoshida, T.; Mizoguchi, T.; Hatsugai, Y., Chiral edge modes in evolutionary game theory: a kagome network of rock-paper-scissors cycles, Phys. Rev. E, 104, 2021 · doi:10.1103/PhysRevE.104.025003
[378] Carletti, T.; Giambagli, L.; Bianconi, G., Global topological synchronization on simplicial and cell complexes, Phys. Rev. Lett., 130, 2023 · doi:10.1103/PhysRevLett.130.187401
[379] Torres, J. J.; Bianconi, G., Simplicial complexes: higher-order spectral dimension and dynamics, J. Phys. Complex., 1, 2020 · doi:10.1088/2632-072X/ab82f5
[380] Kogut, J.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395, 1975 · doi:10.1103/PhysRevD.11.395
[381] Davies, E. B., Analysis on graphs and noncommutative geometry, J. Funct. Anal., 111, 398-430, 1993 · Zbl 0793.46043 · doi:10.1006/jfan.1993.1019
[382] Olaf, P., First order approach and index theorems for discrete and metric graphs, Ann. Henri Poincaré, 10, 823-66, 2009 · Zbl 1206.81044
[383] Hinz, M.; Teplyaev, A., Dirac and magnetic Schrödinger operators on fractals, J. Funct. Anal., 265, 2830-54, 2013 · Zbl 1319.47037 · doi:10.1016/j.jfa.2013.07.021
[384] Hoon Lee, S.; Fricker, M. D.; Porter, M. A., Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits, J. Complex Netw., 5, 145-59, 2017 · doi:10.1093/comnet/cnv034
[385] Majid, S., Dirac operator associated to a quantum metric, 2023
[386] Anné, C.; Torki-Hamza, N., The Gauss-Bonnet operator of an infinite graph, Anal. Math. Phys., 5, 137-59, 2015 · Zbl 1323.05095 · doi:10.1007/s13324-014-0090-0
[387] Athmouni, N.; Baloudi, H.; Damak, M.; Ennaceur, M., The magnetic discrete Laplacian inferred from the Gauß-Bonnet operator and application, Ann. Funct. Anal., 12, 33, 2021 · Zbl 1460.05108 · doi:10.1007/s43034-021-00119-8
[388] Requardt, M., Dirac operators and the calculation of the Connes metric on arbitrary (infinite) graphs, J. Phys. A: Math. Gen., 35, 759, 2002 · Zbl 1041.81069 · doi:10.1088/0305-4470/35/3/319
[389] Parra, D., Spectral and scattering theory for Gauss-Bonnet operators on perturbed topological crystals, J. Math. Anal. Appl., 452, 792-813, 2017 · Zbl 1365.81054 · doi:10.1016/j.jmaa.2017.03.002
[390] Miranda, P.; Parra, D., Continuum limit for a discrete Hodge-Dirac operator on square lattices, Lett. Math. Phys., 113, 45, 2023 · Zbl 1530.47017 · doi:10.1007/s11005-023-01669-9
[391] Lloyd, S.; Garnerone, S.; Zanardi, P., Quantum algorithms for topological and geometric analysis of data, Nat. Commun., 7, 1-7, 2016 · doi:10.1038/ncomms10138
[392] Ameneyro, B.; Maroulas, V.; Siopsis, G., Quantum persistent homology, J. Appl. Comput. Topol., 1-20, 2024 · doi:10.1007/s41468-023-00160-7
[393] Wee, J.; Bianconi, G.; Xia, K., Persistent Dirac for molecular representation, Sci. Rep., 13, 2023 · doi:10.1038/s41598-023-37853-z
[394] Bassoli, R.; Boche, H.; Deppe, C.; Ferrara, R.; Fitzek, F. H P.; Janssen, G.; Saeedinaeeni, S., Quantum Communication Networks, vol 23, 2021, Springer · Zbl 1469.81001
[395] Briegel, H-J; Dür, W.; Cirac, J. I.; Zoller, P., Quantum repeaters: the role of imperfect local operations in quantum communication, Phys. Rev. Lett., 81, 5932, 1998 · doi:10.1103/PhysRevLett.81.5932
[396] Acín, A.; Cirac, J. I.; Lewenstein, M., Entanglement percolation in quantum networks, Nat. Phys., 3, 256-9, 2007 · doi:10.1038/nphys549
[397] Muralidharan, S.; Li, L.; Kim, J.; Lütkenhaus, N.; Lukin, M. D.; Jiang, L., Optimal architectures for long distance quantum communication, Sci. Rep., 6, 1-10, 2016 · doi:10.1038/srep20463
[398] Heshami, K.; England, D. G.; Humphreys, P. C.; Bustard, P. J.; Acosta, V. M.; Nunn, J.; Sussman, B. J., Quantum memories: emerging applications and recent advances, J. Mod. Opt., 63, 2005-28, 2016 · doi:10.1080/09500340.2016.1148212
[399] Awschalom, D., Development of quantum interconnects (QuICs) for next-generation information technologies, PRX Quantum, 2, 2021 · doi:10.1103/PRXQuantum.2.017002
[400] Razavi, M., An Introduction to Quantum Communication Networks: Or, How Shall We Communicate in the Quantum Era?, 2018, Morgan & Claypool Publishers · doi:10.1088/978-1-6817-4653-1
[401] Rohde, P. P., The Quantum Internet: The Second Quantum Revolution, 2021, Cambridge University Press · Zbl 1471.81006
[402] Wei, S-H, Towards real-world quantum networks: a review, Laser Photonics Rev., 16, 2022 · doi:10.1002/lpor.202100219
[403] Brito, S.; Canabarro, A.; Chaves, R.; Cavalcanti, D., Statistical properties of the quantum Internet, Phys. Rev. Lett., 124, 2020 · doi:10.1103/PhysRevLett.124.210501
[404] Brito, S.; Canabarro, A.; Cavalcanti, D.; Chaves, R., Satellite-based photonic quantum networks are small-world, PRX Quantum, 2, 2021 · doi:10.1103/PRXQuantum.2.010304
[405] Perseguers, S.; Cirac, J. I.; Acín, A.; Lewenstein, M.; Wehr, J., Entanglement distribution in pure-state quantum networks, Phys. Rev. A, 77, 2008 · doi:10.1103/PhysRevA.77.022308
[406] Cuquet, M.; Calsamiglia, J., Entanglement percolation in quantum complex networks, Phys. Rev. Lett., 103, 2009 · doi:10.1103/PhysRevLett.103.240503
[407] Harney, C.; Pirandola, S., Analytical methods for high-rate global quantum networks, PRX Quantum, 3, 2022 · doi:10.1103/PRXQuantum.3.010349
[408] Harney, C.; Fletcher, A. I.; Pirandola, S., End-to-end capacities of hybrid quantum networks, Phys. Rev. Appl., 18, 2022 · doi:10.1103/PhysRevApplied.18.014012
[409] Zhuang, Q.; Zhang, B., Quantum communication capacity transition of complex quantum networks, Phys. Rev. A, 104, 2021 · doi:10.1103/PhysRevA.104.022608
[410] Elliott, C.; Colvin, A.; Pearson, D.; Pikalo, O.; Schlafer, J.; Yeh, H., Current status of the DARPA quantum network, Quantum Information and Computation III, vol 5815, pp 138-49, 2005, SPIE
[411] Peev, M., The SECOQC quantum key distribution network in Vienna, New J. Phys., 11, 2009 · doi:10.1088/1367-2630/11/7/075001
[412] Sasaki, M., Field test of quantum key distribution in the tokyo QKD network, Opt. Express, 19, 10387-409, 2011 · doi:10.1364/OE.19.010387
[413] Chen, T-Y, Field test of a practical secure communication network with decoy-state quantum cryptography, Opt. Express, 17, 6540-9, 2009 · doi:10.1364/OE.17.006540
[414] Chen, T-Y, Metropolitan all-pass and inter-city quantum communication network, Opt. Express, 18, 27217-25, 2010 · doi:10.1364/OE.18.027217
[415] Lord, A., London quantum-secured metro network, p W4K-4, 2023, Optica Publishing Group · doi:10.1364/OFC.2023.W4K.4
[416] Qiu, J., Quantum communications leap out of the lab, Nature, 508, 441-2, 2014 · doi:10.1038/508441a
[417] Chen, Y-A, An integrated space-to-ground quantum communication network over 4,600 kilometres, Nature, 589, 214-9, 2021 · doi:10.1038/s41586-020-03093-8
[418] Bedington, R.; Miguel Arrazola, J.; Ling, A., Progress in satellite quantum key distribution, npj Quantum Inf., 3, 1-13, 2017 · doi:10.1038/s41534-017-0031-5
[419] Xu, F.; Ma, X.; Zhang, Q.; Lo, H-K; Pan, J-W, Secure quantum key distribution with realistic devices, Rev. Mod. Phys., 92, 2020 · doi:10.1103/RevModPhys.92.025002
[420] Orieux, A.; Diamanti, E., Recent advances on integrated quantum communications, J. Opt., 18, 2016 · doi:10.1088/2040-8978/18/8/083002
[421] Razavi, M., Integrating quantum and classical networks, An Introduction to Quantum Communications Networks, vol 2053-2571, p 3-1-3-15, 2018, Morgan & Claypool Publishers · doi:10.1088/978-1-6817-4653-1ch3
[422] Lopez, D.; Pedro Brito, J.; Pastor, A.; Martín, V.; Sánchez, C.; Rincon, D.; Lopez, V., Madrid Quantum Communication Infrastructure: a testbed for assessing QKD technologies into real production networks, p Th2A-4, 2021, Optica Publishing Group · doi:10.1364/OFC.2021.Th2A.4
[423] Pirandola, S., Satellite quantum communications: fundamental bounds and practical security, Phys. Rev. Res., 3, 2021 · doi:10.1103/PhysRevResearch.3.023130
[424] Goswami, S.; Dhara, S., Satellite-relayed global quantum communication without quantum memory, Phys. Rev. Appl., 20, 2023 · doi:10.1103/PhysRevApplied.20.024048
[425] Lucamarini, M.; Yuan, Z. L.; Dynes, J. F.; Shields, A. J., Overcoming the rate-distance limit of quantum key distribution without quantum repeaters, Nature, 557, 400-3, 2018 · doi:10.1038/s41586-018-0066-6
[426] Minder, M.; Pittaluga, M.; Roberts, G. L.; Lucamarini, M.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J., Experimental quantum key distribution beyond the repeaterless secret key capacity, Nat. Photon., 13, 334-8, 2019 · doi:10.1038/s41566-019-0377-7
[427] Wang, S., Twin-field quantum key distribution over 830 km fibre, Nat. Photon., 16, 154-61, 2022 · doi:10.1038/s41566-021-00928-2
[428] Kurizki, G.; Bertet, P.; Kubo, Y.; Mølmer, K.; Petrosyan, D.; Rabl, P.; Schmiedmayer, J., Quantum technologies with hybrid systems, Proc. Natl Acad. Sci., 112, 3866-73, 2015 · doi:10.1073/pnas.1419326112
[429] Hasegawa, Y.; Ikuta, R.; Matsuda, N.; Tamaki, K.; Lo, H-K; Yamamoto, T.; Azuma, K.; Imoto, N., Experimental time-reversed adaptive bell measurement towards all-photonic quantum repeaters, Nat. Commun., 10, 1-9, 2019 · doi:10.1038/s41467-018-08099-5
[430] Li, Z-D, Experimental quantum repeater without quantum memory, Nat. Photon., 13, 644-8, 2019 · doi:10.1038/s41566-019-0468-5
[431] Christandl, M.; Datta, N.; Ekert, A.; Landahl, A. J., Perfect state transfer in quantum spin networks, Phys. Rev. Lett., 92, 2004 · doi:10.1103/PhysRevLett.92.187902
[432] Christandl, M.; Datta, N.; Dorlas, T. C.; Ekert, A.; Kay, A.; Landahl, A. J., Perfect transfer of arbitrary states in quantum spin networks, Phys. Rev. A, 71, 2005 · doi:10.1103/PhysRevA.71.032312
[433] Burgarth, D.; Bose, S., Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels, Phys. Rev. A, 71, 2005 · doi:10.1103/PhysRevA.71.052315
[434] Wojcik, A.; Łuczak, T.; Kurzyński, P.; Grudka, A.; Gdala, T.; Bednarska, M., Multiuser quantum communication networks, Phys. Rev. A, 75, 2007 · doi:10.1103/PhysRevA.75.022330
[435] Paganelli, S.; Lorenzo, S.; Apollaro, T. J G.; Plastina, F.; Luca Giorgi, G. L., Routing quantum information in spin chains, Phys. Rev. A, 87, 2013 · doi:10.1103/PhysRevA.87.062309
[436] Plenio, M. B.; Hartley, J.; Eisert, J., Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom, New J. Phys., 6, 36, 2004 · doi:10.1088/1367-2630/6/1/036
[437] Plenio, M. B.; Semiao, F. L., High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains, New J. Phys., 7, 73, 2005 · doi:10.1088/1367-2630/7/1/073
[438] Chudzicki, C.; Strauch, F. W., Parallel state transfer and efficient quantum routing on quantum networks, Phys. Rev. Lett., 105, 2010 · doi:10.1103/PhysRevLett.105.260501
[439] Portes, D.; Rodrigues, H.; Duarte, S. B.; Baseia, B., Perfect transfer of quantum states in a network of harmonic oscillators, Eur. Phys. J. D, 67, 1-6, 2013 · doi:10.1140/epjd/e2013-40161-y
[440] Nicacio, F.; Semião, F. L., Coupled harmonic systems as quantum buses in thermal environments, J. Phys. A: Math. Theor., 49, 2016 · Zbl 1348.81487 · doi:10.1088/1751-8113/49/37/375303
[441] Lewis, D.; Moutinho, J. P.; Costa, A. T.; Omar, Y.; Bose, S., Low-dissipation data bus via coherent quantum dynamics, Phys. Rev. B, 108, 2023 · doi:10.1103/PhysRevB.108.075405
[442] Alléaume, R., Using quantum key distribution for cryptographic purposes: a survey, Theor. Comput. Sci., 560, 62-81, 2014 · Zbl 1306.81029 · doi:10.1016/j.tcs.2014.09.018
[443] Diamanti, E.; Lo, H-K; Qi, B.; Yuan, Z., Practical challenges in quantum key distribution, npj Quantum Inf., 2, 1-12, 2016 · doi:10.1038/npjqi.2016.25
[444] Pirandola, S., Advances in quantum cryptography, Adv. Opt. Photon., 12, 1012-236, 2020 · doi:10.1364/AOP.361502
[445] Ramakrishnan, R. K.; Balaji Ravichandran, A.; Kaushik, I.; Hegde, G.; Talabattula, S.; Rohde, P. P., The quantum internet: a hardware review, J. Indian Inst. Sci., 103, 1-21, 2022 · Zbl 1542.81266 · doi:10.1007/s41745-022-00336-7
[446] Roffe, J., Quantum error correction: an introductory guide, Contemp. Phys., 60, 226-45, 2019 · doi:10.1080/00107514.2019.1667078
[447] Illiano, J.; Caleffi, M.; Manzalini, A.; Sara Cacciapuoti, A., Quantum internet protocol stack: a comprehensive survey, Comput. Netw., 213, 2022 · doi:10.1016/j.comnet.2022.109092
[448] Sidhu, J. S., Advances in space quantum communications, IET Quantum Communication, 2, 182-217, 2021 · doi:10.1049/qtc2.12015
[449] Kaltenbaek, R., Quantum technologies in space, Exp. Astron., 51, 1677-94, 2021 · doi:10.1007/s10686-021-09731-x
[450] de Forges de Parny, L., Satellite-based quantum information networks: use cases, architecture and roadmap, Commun. Phys., 6, 12, 2023 · doi:10.1038/s42005-022-01123-7
[451] Pirandola, S.; Laurenza, R.; Ottaviani, C.; Banchi, L., Fundamental limits of repeaterless quantum communications, Nat. Commun., 8, 1-15, 2017 · doi:10.1038/ncomms15043
[452] Boaron, A., Secure quantum key distribution over 421 km of optical fiber, Phys. Rev. Lett., 121, 2018 · doi:10.1103/PhysRevLett.121.190502
[453] Pirandola, S., End-to-end capacities of a quantum communication network, Commun. Phys., 2, 1-10, 2019 · doi:10.1038/s42005-019-0147-3
[454] Liorni, C.; Kampermann, H.; Bruß, D., Quantum repeaters in space, New J. Phys., 23, 2021 · doi:10.1088/1367-2630/abfa63
[455] Waxman, B. M., Routing of multipoint connections, IEEE J. Sel. Areas Commun., 6, 1617-22, 1988 · doi:10.1109/49.12889
[456] Yin, J., Satellite-based entanglement distribution over 1200 kilometers, Science, 356, 1140-4, 2017 · doi:10.1126/science.aan3211
[457] Chang, X-Y; Deng, D-L; Yuan, X-X; Hou, P-Y; Huang, Y-Y; Duan, L-M, Experimental realization of an entanglement access network and secure multi-party computation, Sci. Rep., 6, 1-7, 2016 · doi:10.1038/srep29453
[458] Wengerowsky, S.; Joshi, S. K.; Steinlechner, F.; Hübel, H.; Ursin, R., An entanglement-based wavelength-multiplexed quantum communication network, Nature, 564, 225-8, 2018 · doi:10.1038/s41586-018-0766-y
[459] Joshi, S. K., A trusted node-free eight-user metropolitan quantum communication network, Sci. Adv., 6, eaba0959, 2020 · doi:10.1126/sciadv.aba0959
[460] Ottaviani, C.; Lupo, C.; Laurenza, R.; Pirandola, S., Modular network for high-rate quantum conferencing, Commun. Phys., 2, 118, 2019 · doi:10.1038/s42005-019-0209-6
[461] Bonato, C.; Tomaello, A.; Da Deppo, V.; Naletto, G.; Villoresi, P., Feasibility of satellite quantum key distribution, New J. Phys., 11, 2009 · doi:10.1088/1367-2630/11/4/045017
[462] Chitambar, E.; Leung, D.; Mančinska, L.; Ozols, M.; Winter, A., Everything you always wanted to know about LOCC (but were afraid to ask), Commun. Math. Phys., 328, 303-26, 2014 · Zbl 1290.81012 · doi:10.1007/s00220-014-1953-9
[463] Pirandola, S.; García-Patrón, R.; Braunstein, S. L.; Lloyd, S., Direct and reverse secret-key capacities of a quantum channel, Phys. Rev. Lett., 102, 2009 · doi:10.1103/PhysRevLett.102.050503
[464] Takeoka, M.; Guha, S.; Wilde, M. M., Fundamental rate-loss tradeoff for optical quantum key distribution, Nat. Commun., 5, 1-7, 2014 · doi:10.1038/ncomms6235
[465] Azuma, K.; Mizutani, A.; Lo, H-K, Fundamental rate-loss trade-off for the quantum Internet, Nat. Commun., 7, 1-8, 2016 · doi:10.1038/ncomms13523
[466] Rigovacca, L.; Kato, G.; Bäuml, S.; Kim, M. S.; Munro, W. J.; Azuma, K., Versatile relative entropy bounds for quantum networks, New J. Phys., 20, 2018 · Zbl 1540.81034 · doi:10.1088/1367-2630/aa9fcf
[467] Azuma, K.; Bäuml, S.; Coopmans, T.; Elkouss, D.; Li, B., Tools for quantum network design, AVS Quantum Sci., 3, 2021 · doi:10.1116/5.0024062
[468] Winnel, M. S.; Guanzon, J. J.; Hosseinidehaj, N.; Ralph, T. C., Achieving the ultimate end-to-end rates of lossy quantum communication networks, npj Quantum Inf., 8, 129, 2022 · doi:10.1038/s41534-022-00641-0
[469] Zhang, B.; Zhuang, Q., Quantum Internet under random breakdowns and intentional attacks, Quantum Sci. Technol., 6, 2021 · doi:10.1088/2058-9565/ac1041
[470] Cuquet, M.; Calsamiglia, J., Limited-path-length entanglement percolation in quantum complex networks, Phys. Rev. A, 83, 2011 · doi:10.1103/PhysRevA.83.032319
[471] Perseguers, S.; Lapeyre Jr, G. J.; Cavalcanti, D.; Lewenstein, M.; Acín, A., Distribution of entanglement in large-scale quantum networks, Rep. Prog. Phys., 76, 2013 · doi:10.1088/0034-4885/76/9/096001
[472] Wu, A-K; Tian, L.; Coelho Coutinho, B.; Omar, Y.; Liu, Y-Y, Structural vulnerability of quantum networks, Phys. Rev. A, 101, 2020 · doi:10.1103/PhysRevA.101.052315
[473] Perseguers, S.; Cavalcanti, D.; Lapeyre, G. J.; Lewenstein, M.; Acín, A., Multipartite entanglement percolation, Phys. Rev. A, 81, 2010 · doi:10.1103/PhysRevA.81.032327
[474] Patil, A.; Pant, M.; Englund, D.; Towsley, D.; Guha, S., Entanglement generation in a quantum network at distance-independent rate, npj Quantum Inf., 8, 1-9, 2022 · doi:10.1038/s41534-022-00536-0
[475] Siomau, M., Quantum entanglement percolation, J. Phys. B: At. Mol. Opt. Phys., 49, 2016 · doi:10.1088/0953-4075/49/17/175506
[476] Perseguers, S.; Lewenstein, M.; Acin, A.; Cirac, J. I., Quantum random networks, Nat. Phys., 6, 539-43, 2010 · doi:10.1038/nphys1665
[477] Meng, X.; Hu, X.; Tian, Y.; Dong, G.; Lambiotte, R.; Gao, J.; Havlin, S., Percolation theories for quantum networks, Entropy, 25, 1564, 2023 · doi:10.3390/e25111564
[478] Meng, X.; Gao, J.; Havlin, S., Concurrence percolation in quantum networks, Phys. Rev. Lett., 126, 2021 · doi:10.1103/PhysRevLett.126.170501
[479] Malik, O.; Meng, X.; Havlin, S.; Korniss, G.; Karol Szymanski, B.; Gao, J., Concurrence percolation threshold of large-scale quantum networks, Commun. Phys., 5, 193, 2022 · doi:10.1038/s42005-022-00958-4
[480] Meng, X.; Cui, Y.; Gao, J.; Havlin, S.; Ruckenstein, A. E., Deterministic entanglement distribution on series-parallel quantum networks, Phys. Rev. Res., 5, 2023 · doi:10.1103/PhysRevResearch.5.013225
[481] Clauser, J. F.; Horne, M. A.; Shimony, A.; Holt, R. A., Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., 23, 880, 1969 · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[482] Fine, A., Hidden variables, joint probability and the Bell inequalities, Phys. Rev. Lett., 48, 291, 1982 · doi:10.1103/PhysRevLett.48.291
[483] Hansenne, K.; Xu, Z-P; Kraft, T.; Gühne, O., Symmetries in quantum networks lead to no-go theorems for entanglement distribution and to verification techniques, Nat. Commun., 13, 496, 2022 · doi:10.1038/s41467-022-28006-3
[484] Siomau, M., Structural complexity of quantum networks, AIP Conf. Proc., 1742, 2016 · doi:10.1063/1.4953138
[485] Broadbent, A.; Jeffery, S., Quantum homomorphic encryption for circuits of low T-gate complexity, 609-29, 2015, Springer · Zbl 1369.94521 · doi:10.1007/978-3-662-48000-7_30
[486] Broadbent, A.; Fitzsimons, J.; Kashefi, E., Universal blind quantum computation, 517-26, 2009, IEEE · Zbl 1292.81023 · doi:10.1109/FOCS.2009.36
[487] Komar, P.; Kessler, E. M.; Bishof, M.; Jiang, L.; Sørensen, A. S.; Ye, J.; Lukin, M. D., A quantum network of clocks, Nat. Phys., 10, 582-7, 2014 · doi:10.1038/nphys3000
[488] Gottesman, D.; Jennewein, T.; Croke, S., Longer-baseline telescopes using quantum repeaters, Phys. Rev. Lett., 109, 2012 · doi:10.1103/PhysRevLett.109.070503
[489] Ben-Or, M.; Hassidim, A., Fast quantum Byzantine agreement, 481-5, 2005 · Zbl 1192.81053 · doi:10.1145/1060590.1060662
[490] Tani, S.; Kobayashi, H.; Matsumoto, K., Exact quantum algorithms for the leader election problem, 581-92, 2005, Springer · Zbl 1118.68495 · doi:10.1007/978-3-540-31856-9_48
[491] Devitt, S. J.; Greentree, A. D.; Stephens, A. M.; Van Meter, R., High-speed quantum networking by ship, Sci. Rep., 6, 2016 · doi:10.1038/srep36163
[492] Mehic, M.; Maurhart, O.; Rass, S.; Komosny, D.; Rezac, F.; Voznak, M., Analysis of the public channel of quantum key distribution link, IEEE J. Quantum Electron., 53, 1-8, 2017 · doi:10.1109/JQE.2017.2740426
[493] Gündoğan, M.; Sidhu, J. S.; Henderson, V.; Mazzarella, L.; Wolters, J.; Oi, D. K L.; Krutzik, M., Proposal for space-borne quantum memories for global quantum networking, npj Quantum Inf., 7, 128, 2021 · doi:10.1038/s41534-021-00460-9
[494] Khatri, S.; Brady, A. J.; Desporte, R. A.; Bart, M. P.; Dowling, J. P., Spooky action at a global distance: analysis of space-based entanglement distribution for the quantum Internet, npj Quantum Inf., 7, 4, 2021 · doi:10.1038/s41534-020-00327-5
[495] Wallnöfer, J.; Hahn, F.; Gündoğan, M.; Sidhu, J. S.; Wiesner, F.; Walk, N.; Eisert, J.; Wolters, J., Simulating quantum repeater strategies for multiple satellites, Commun. Phys., 5, 169, 2022 · doi:10.1038/s42005-022-00945-9
[496] Broadfoot, S.; Dorner, U.; Jaksch, D., Entanglement percolation with bipartite mixed states, Europhys. Lett., 88, 2009 · doi:10.1209/0295-5075/88/50002
[497] Broadfoot, S.; Dorner, U.; Jaksch, D., Singlet generation in mixed-state quantum networks, Phys. Rev. A, 81, 2010 · doi:10.1103/PhysRevA.81.042316
[498] Broadfoot, S.; Dorner, U.; Jaksch, D., Long-distance entanglement generation in two-dimensional networks, Phys. Rev. A, 82, 2010 · doi:10.1103/PhysRevA.82.042326
[499] Lapeyre, G. J.; Perseguers, S.; Lewenstein, M.; Acín, A., Distribution of entanglement in networks of bi-partite full-rank mixed states, 2011
[500] Laurenza, R.; Walk, N.; Eisert, J.; Pirandola, S., Rate limits in quantum networks with lossy repeaters, Phys. Rev. Res., 4, 2022 · doi:10.1103/PhysRevResearch.4.023158
[501] Hartmann, L.; Kraus, B.; Briegel, H-J; Dür, W., Role of memory errors in quantum repeaters, Phys. Rev. A, 75, 2007 · doi:10.1103/PhysRevA.75.032310
[502] Razavi, M.; Piani, M.; Lütkenhaus, N., Quantum repeaters with imperfect memories: Cost and scalability, Phys. Rev. A, 80, 2009 · doi:10.1103/PhysRevA.80.032301
[503] Zhan, Y.; Sun, S., Deterministic generation of loss-tolerant photonic cluster states with a single quantum emitter, Phys. Rev. Lett., 125, 2020 · doi:10.1103/PhysRevLett.125.223601
[504] Das, S.; Khatri, S.; Dowling, J. P., Robust quantum network architectures and topologies for entanglement distribution, Phys. Rev. A, 97, 2018 · doi:10.1103/PhysRevA.97.012335
[505] Khatri, S.; Matyas, C. T.; Siddiqui, A. U.; Dowling, J. P., Practical figures of merit and thresholds for entanglement distribution in quantum networks, Phys. Rev. Res., 1, 2019 · doi:10.1103/PhysRevResearch.1.023032
[506] Van Meter, R.; Satoh, T.; Ladd, T. D.; Munro, W. J.; Nemoto, K., Path selection for quantum repeater networks, Netw. Sci., 3, 82-95, 2013 · doi:10.1007/s13119-013-0026-2
[507] Chakraborty, K.; Elkouss, D.; Rijsman, B.; Wehner, S., Entanglement distribution in a quantum network: a multicommodity flow-based approach, IEEE Trans. Quantum Eng., 1, 1-21, 2020 · doi:10.1109/TQE.2020.3028172
[508] Caleffi, M., Optimal routing for quantum networks, IEEE Access, 5, 22299-312, 2017 · doi:10.1109/ACCESS.2017.2763325
[509] Santos, S.; Monteiro, F. A.; Coutinho, B. C.; Omar, Y., Shortest path finding in quantum networks with quasi-linear complexity, IEEE Access, 11, 7180-94, 2023 · doi:10.1109/ACCESS.2023.3237997
[510] Chakraborty, K.; Rozpedek, F.; Dahlberg, A.; Wehner, S., Distributed routing in a quantum internet, 2019
[511] Pant, M.; Krovi, H.; Towsley, D.; Tassiulas, L.; Jiang, L.; Basu, P.; Englund, D.; Guha, S., Routing entanglement in the quantum Internet, npj Quantum Inf., 5, 1-9, 2019 · doi:10.1038/s41534-019-0139-x
[512] Bugalho, L.; Coutinho, B. C.; Monteiro, F. A.; Omar, Y., Distributing multipartite entanglement over noisy quantum networks, Quantum, 7, 920, 2023 · doi:10.22331/q-2023-02-09-920
[513] Sutcliffe, E.; Beghelli, A., Multiuser entanglement distribution in quantum networks using multipath routing, IEEE Trans. Quantum Eng., 4, 1-15, 2023 · doi:10.1109/TQE.2023.3329714
[514] Goodenough, K.; Elkouss, D.; Wehner, S., Optimizing repeater schemes for the quantum Internet, Phys. Rev. A, 103, 2021 · doi:10.1103/PhysRevA.103.032610
[515] Coelho Coutinho, B.; Munro, W. J.; Nemoto, K.; Omar, Y., Robustness of noisy quantum networks, Commun. Phys., 5, 105, 2022 · doi:10.1038/s42005-022-00866-7
[516] Agresti, I.; Polacchi, B.; Poderini, D.; Polino, E.; Suprano, A.; Šupić, I.; Bowles, J.; Carvacho, G.; Cavalcanti, D.; Sciarrino, F., Experimental robust self-testing of the state generated by a quantum network, PRX Quantum, 2, 2021 · doi:10.1103/PRXQuantum.2.020346
[517] D’Alessandro, N.; Polacchi, B.; Moreno, G.; Polino, E.; Chaves, R.; Agresti, I.; Sciarrino, F., Machine-learning-based device-independent certification of quantum networks, Phys. Rev. Res., 5, 2023 · doi:10.1103/PhysRevResearch.5.023016
[518] Cirigliano, L.; Brosco, V.; Castellano, C.; Conti, C.; Pilozzi, L., Optimal quantum communication networks: capacitance versus security, npj Quantum Inf., 10, 44, 2024 · doi:10.1038/s41534-024-00828-7
[519] Cirigliano, L.; Castellano, C.; Timár, G., Extended-range percolation in complex networks, Phys. Rev. E, 108, 2023 · doi:10.1103/PhysRevE.108.044304
[520] Ma, X.; Zeng, P.; Zhou, H., Phase-matching quantum key distribution, Phys. Rev. X, 8, 2018 · doi:10.1103/PhysRevX.8.031043
[521] Lin, J.; Lütkenhaus, N., Simple security analysis of phase-matching measurement-device-independent quantum key distribution, Phys. Rev. A, 98, 2018 · doi:10.1103/PhysRevA.98.042332
[522] Ebler, D.; Salek, S.; Chiribella, G., Enhanced communication with the assistance of indefinite causal order, Phys. Rev. Lett., 120, 2018 · doi:10.1103/PhysRevLett.120.120502
[523] Rubino, G., Experimental quantum communication enhancement by superposing trajectories, Phys. Rev. Res., 3, 2021 · doi:10.1103/PhysRevResearch.3.013093
[524] Miguel-Ramiro, J.; Pirker, A.; Dür, W., Genuine quantum networks with superposed tasks and addressing, npj Quantum Inf., 7, 135, 2021 · doi:10.1038/s41534-021-00472-5
[525] Santra, S.; Malinovsky, V. S., Quantum networking with short-range entanglement assistance, Phys. Rev. A, 103, 2021 · doi:10.1103/PhysRevA.103.012407
[526] Lu, H.; Li, Z-D; Yin, X-F; Zhang, R.; Fang, X-X; Li, L.; Liu, N-L; Xu, F.; Chen, Y-A; Pan, J-W, Experimental quantum network coding, npj Quantum Inf., 5, 1-5, 2019 · doi:10.1038/s41534-019-0207-2
[527] Pirandola, S.; Braunstein, S. L., Physics: unite to build a quantum Internet, Nature, 532, 169-71, 2016 · doi:10.1038/532169a
[528] Guccione, G.; Darras, T.; Jeannic, H. L.; Verma, V. B.; Nam, S. W.; Cavaillès, A.; Laurat, J., Connecting heterogeneous quantum networks by hybrid entanglement swapping, Sci. Adv., 6, eaba4508, 2020 · doi:10.1126/sciadv.aba4508
[529] Brand, S.; Coopmans, T.; Elkouss, D., Efficient computation of the waiting time and fidelity in quantum repeater chains, IEEE J. Sel. Areas Commun., 38, 619-39, 2020 · doi:10.1109/JSAC.2020.2969037
[530] Sadhu, A.; Ayyala Somayajula, M.; Horodecki, K.; Das, S., Practical limitations on robustness and scalability of quantum Internet, 2023
[531] Pirker, A.; Wallnöfer, J.; Dür, W., Modular architectures for quantum networks, New J. Phys., 20, 2018 · doi:10.1088/1367-2630/aac2aa
[532] Meignant, C.; Markham, D.; Grosshans, F., Distributing graph states over arbitrary quantum networks, Phys. Rev. A, 100, 2019 · doi:10.1103/PhysRevA.100.052333
[533] Raussendorf, R.; Harrington, J.; Goyal, K., Topological fault-tolerance in cluster state quantum computation, New J. Phys., 9, 199, 2007 · doi:10.1088/1367-2630/9/6/199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.