×

Efficient forecasting of chaotic systems with block-diagonal and binary reservoir computing. (English) Zbl 07858604


MSC:

37M05 Simulation of dynamical systems
Full Text: DOI

References:

[1] Brunton, S. L.; Kutz, J. N., Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2022), Cambridge University Press · Zbl 1487.68001
[2] Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A. A., Generative adversarial networks: An overview, IEEE Signal Process. Mag., 35, 53-65 (2018) · doi:10.1109/MSP.2017.2765202
[3] Zhang, J.; Wang, Y.; Molino, P.; Li, L.; Ebert, D. S., Manifold: A model-agnostic framework for interpretation and diagnosis of machine learning models, IEEE Trans. Visualiz. Comp. Graphics, 25, 364-373 (2018) · doi:10.1109/TVCG.2018.2864499
[4] Roscher, R.; Bohn, B.; Duarte, M. F.; Garcke, J., Explainable machine learning for scientific insights and discoveries, IEEE Access, 8, 42200-42216 (2020) · doi:10.1109/ACCESS.2020.2976199
[5] Tanaka, G.; Yamane, T.; Héroux, J. B.; Nakane, R.; Kanazawa, N.; Takeda, S.; Numata, H.; Nakano, D.; Hirose, A., Recent advances in physical reservoir computing: A review, Neural Netw., 115, 100-123 (2019) · doi:10.1016/j.neunet.2019.03.005
[6] Prokhorov, D., “Echo state networks: Appeal and challenges,” in Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005 (IEEE, 2005), Vol. 3, pp. 1463-1466.
[7] Hochreiter, S., The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertain. Fuzziness Knowledge-Based Syst., 6, 107-116 (1998) · Zbl 1087.68616 · doi:10.1142/S0218488598000094
[8] Haluszczynski, A.; Aumeier, J.; Herteux, J.; Räth, C., Reducing network size and improving prediction stability of reservoir computing, Chaos, 30, 063136 (2020) · Zbl 1440.37076 · doi:10.1063/5.0006869
[9] Holzmann, G., “Reservoir computing: A powerful black-box framework for nonlinear audio processing,” in International Conference on Digital Audio Effects (DAFx) (Citeseer, 2009).
[10] Carroll, T. L.; Pecora, L. M., Network structure effects in reservoir computers, Chaos, 29, 083130 (2019) · Zbl 1490.68105 · doi:10.1063/1.5097686
[11] Haluszczynski, A.; Räth, C., Good and bad predictions: Assessing and improving the replication of chaotic attractors by means of reservoir computing, Chaos, 29, 103143 (2019) · Zbl 1425.37025 · doi:10.1063/1.5118725
[12] Maass, W.; Natschläger, T.; Markram, H., Real-time computing without stable states: A new framework for neural computation based on perturbations, Neural Comput., 14, 2531-2560 (2002) · Zbl 1057.68618 · doi:10.1162/089976602760407955
[13] Jaeger, H., “The “echo state” approach to analysing and training recurrent neural networks-with an erratum note,” German National Research Center for Information Technology GMD Technical Report, Bonn, Germany, No. 148, p. 13 (2001).
[14] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 440-442 (1998) · Zbl 1368.05139 · doi:10.1038/30918
[15] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[16] Broido, A. D.; Clauset, A., Scale-free networks are rare, Nat. Commun., 10, 1017 (2019) · doi:10.1038/s41467-019-08746-5
[17] Gerlach, M.; Altmann, E. G., Testing statistical laws in complex systems, Phys. Rev. Lett., 122, 168301 (2019) · doi:10.1103/PhysRevLett.122.168301
[18] Griffith, A.; Pomerance, A.; Gauthier, D. J., Forecasting chaotic systems with very low connectivity reservoir computers, Chaos, 29, 123108 (2019) · doi:10.1063/1.5120710
[19] Pathak, J.; Lu, Z.; Hunt, B. R.; Girvan, M.; Ott, E., Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data, Chaos, 27, 121102 (2017) · Zbl 1390.37138 · doi:10.1063/1.5010300
[20] Lu, Z.; Hunt, B. R.; Ott, E., Attractor reconstruction by machine learning, Chaos, 28, 061104 (2018) · doi:10.1063/1.5039508
[21] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[22] Herteux, J.; Räth, C., Breaking symmetries of the reservoir equations in echo state networks, Chaos, 30, 123142 (2020) · Zbl 1451.37109 · doi:10.1063/5.0028993
[23] Vaidyanathan, S. and Azar, A. T., “Adaptive control and synchronization of Halvorsen circulant chaotic systems,” in Advances in Chaos Theory and Intelligent Control (Springer, 2016), pp. 225-247. · Zbl 1359.93248
[24] Hairer, E.; Nørsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I (1993), Springer · Zbl 0789.65048
[25] Jaeger, H.; Haas, H., Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science, 304, 78-80 (2004) · doi:10.1126/science.1091277
[26] Haluszczynski, A., “Prediction and control of nonlinear dynamical systems using machine learning,” Ph.D, dissertation (Ludwig-Maximilians-Universität München, 2021).
[27] Erdös, P.; Rényi, A., On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci., 5, 17-60 (1960) · Zbl 0103.16301
[28] Hoerl, A. E.; Kennard, R. W., Ridge regression: Applications to nonorthogonal problems, Technometrics, 12, 69-82 (1970) · Zbl 0202.17206 · doi:10.1080/00401706.1970.10488635
[29] Paige, C. C., Bidiagonalization of matrices and solution of linear equations, SIAM J. Numer. Anal., 11, 197-209 (1974) · Zbl 0244.65023 · doi:10.1137/0711019
[30] Kobourov, S. G.
[31] Yu, D., Wang, H., Chen, P., and Wei, Z., “Mixed pooling for convolutional neural networks,” in Rough Sets and Knowledge Technology: 9th International Conference, RSKT 2014, Shanghai, China, October 24-26, 2014, Proceedings 9 (Springer, 2014), pp. 364-375.
[32] Dietterich, T. G., “Ensemble methods in machine learning,” in Multiple Classifier Systems: First International Workshop, MCS 2000 Cagliari, Italy, June 21-23, 2000 Proceedings 1 (Springer, 2000), pp. 1-15.
[33] Grassberger, P. and Procaccia, I., “Measuring the strangeness of strange attractors,” in The Theory of Chaotic Attractors (Springer, 2004), pp. 170-189. · Zbl 0593.58024
[34] Mandelbrot, B., How long is the coast of Britain? Statistical self-similarity and fractional dimension, Science, 156, 636-638 (1967) · doi:10.1126/science.156.3775.636
[35] Grassberger, P., Generalized dimensions of strange attractors, Phys. Lett. A, 97, 227-230 (1983) · doi:10.1016/0375-9601(83)90753-3
[36] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[37] Shaw, R., Strange attractors, chaotic behavior, and information flow, Z. Naturforsch. A, 36, 80-112 (1981) · Zbl 0599.58033 · doi:10.1515/zna-1981-0115
[38] Rosenstein, M. T.; Collins, J. J.; De Luca, C. J., A practical method for calculating largest Lyapunov exponents from small data sets, Physica D, 65, 117-134 (1993) · Zbl 0779.58030 · doi:10.1016/0167-2789(93)90009-P
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.