×

Continuum limit for a discrete Hodge-Dirac operator on square lattices. (English) Zbl 1530.47017

The paper investigates the convergence of a certain Hodge-Dirac operator \(D_h = d_h + d_h^\ast\) on the lattice \(h \mathbb{Z}^n\) to the continuous Hodge-Dirac operator on \(\mathbb{R}^n\) in the limit \(h\to 0\).
The authors first introduce an abstract framework called “combinatorial differential complexes” \(X\) and associated exterior derivatives. These notions generalize simplicial complexes and their associated exterior derivatives. This concept allows them to consider \(h\mathbb{Z}^n\) as a combinatorial differential complex \(X(h \mathbb{Z}^n)\) of dimension \(n\) (as a simplicial complex, \(h\mathbb{Z}^n\) is a graph and has dimension \(1\)). Vaguely speaking, hypercubes of dimension \(j\) in the lattice \(h \mathbb{Z}^n\) correspond to faces of dimension \(j\) in the combinatorial differential complex \(X(h \mathbb{Z}^n)\). The associated exterior derivative \(d_h \colon \ell^2(X(h \mathbb{Z}^n)) \to \ell^2(X(h \mathbb{Z}^n))\) then gives rise to the Dirac operator \(D_h = d_h+ d_h^\ast\).
The exterior derivative \(d_h\) is shown to be unitarily equivalent to a certain discrete Hodge-Dirac operator \(\tilde d_h = \sum_{j=0}^n \tilde d_{j,h}\) on \(\bigoplus_{j=0}^n \ell^2(h\mathbb{Z}^n; \bigwedge^j (h \mathbb{Z}^n))\), where each \(\tilde d_{j,h} \colon \ell^2(h\mathbb{Z}^n; \bigwedge^j (h \mathbb{Z}^n)) \to \ell^2(h\mathbb{Z}^n; \bigwedge^{j+1} (h \mathbb{Z}^n))\) is a discrete exterior derivative defined on a suitable space of discrete differential forms \(\ell^2(h\mathbb{Z}^n; \bigwedge^j (h \mathbb{Z}^n))\) of order \(j\).
The authors then prove that, as \(h \to 0\), the discrete Hodge-Dirac operator \(D_h\) converges in a generalized norm resolvent sense to the Hodge-Dirac operator \(D = d +d^\ast\) on \(\bigoplus_{j=0}^n L^2(\mathbb{R}^n; \mathbb{C}^{\binom{n}{k}})\). Other versions of discrete Dirac operators are known to converge to their continuous counter-parts only in the (generalized) strong resolvent sense, see, e.g., [H. Cornean et al., J. Spectr. Theory 12, No. 4, 1589–1622 (2022; Zbl 1530.47016)].

MSC:

47A58 Linear operator approximation theory
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
58A10 Differential forms in global analysis
47B39 Linear difference operators
26A33 Fractional derivatives and integrals

Citations:

Zbl 1530.47016

References:

[1] Anné, C.; Torki-Hamza, N., The Gauss-Bonnet operator of an infinite graph, Anal. Math. Phys., 5, 2, 137-159 (2015) · Zbl 1323.05095 · doi:10.1007/s13324-014-0090-0
[2] Athmouni, N.; Baloudi, H.; Damak, M.; Ennaceur, M., The magnetic discrete Laplacian inferred from the Gauß-Bonnet operator and application, Ann. Funct. Anal., 12, 2, 33 (2021) · Zbl 1460.05108 · doi:10.1007/s43034-021-00119-8
[3] Bourget, O.; Flores, G.; Moreno, R.; Taarabt, A., One-dimensional discrete Dirac operators in a decaying random potential I: spectrum and dynamics, Math. Phys. Anal. Geom., 23, 2, 20 (2020) · Zbl 1441.82009 · doi:10.1007/s11040-020-09341-7
[4] Cassano, B.; Ibrogimov, O.; Krejčiřík, D.; Štampach, F., Location of eigenvalues of non-self-adjoint discrete Dirac operators, Ann. Henri Poincaré, 21, 7, 2193-2217 (2020) · Zbl 1454.47033 · doi:10.1007/s00023-020-00916-2
[5] Cornean, H.; Garde, H.; Jensen, A., Norm resolvent convergence of discretized Fourier multipliers, J. Fourier Anal. Appl., 27, 4, 71 (2021) · Zbl 07384280 · doi:10.1007/s00041-021-09876-5
[6] Cornean, H., Garde, H., Jensen, A.: Discrete approximations to Dirichlet and Neumann Laplacians on a half-space and norm resolvent convergence. 2022. eprint: arXiv:2211.01974 (2022). to appear in Studia Math.
[7] Cornean, H., Garde, H., Jensen, A.: Discrete approximations to Dirac operators and norm resolvent convergence. 2022. eprint: arXiv:2203.07826 (2022). to appear in J. Spectr. Theory
[8] Chebbi, Y., The discrete Laplacian of a 2-simplicial complex, Potential Anal., 49, 2, 331-358 (2018) · Zbl 1395.05095 · doi:10.1007/s11118-017-9659-1
[9] Chebbi, Y., Spectral gap of the discrete Laplacian on triangulations, J. Math. Phys., 61, 10 (2020) · Zbl 1456.05099 · doi:10.1063/1.5115778
[10] Dodziuk, J., Finite-difference approach to the Hodge theory of harmonic forms, Amer. J. Math., 98, 1, 79-104 (1976) · Zbl 0324.58001 · doi:10.2307/2373615
[11] Eckmann, B., Harmonische Funktionen und Randwertaufgaben in einem Komplex, Comment. Math. Helv., 17, 240-255 (1945) · Zbl 0061.41106 · doi:10.1007/BF02566245
[12] Exner, P.; Nakamura, S.; Tadano, Y., Continuum limit of the lattice quantum graph Hamiltonian, Lett. Math. Phys., 112, 4, 83 (2022) · Zbl 1513.81068 · doi:10.1007/s11005-022-01576-5
[13] Anna, G.; Uli, W., On eigenvalues of random complexes, Israel J. Math., 216, 2, 545-582 (2016) · Zbl 1353.05079 · doi:10.1007/s11856-016-1419-1
[14] Horak, D.; Jost, J., Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244, 303-336 (2013) · Zbl 1290.05103 · doi:10.1016/j.aim.2013.05.007
[15] Keller, M.: Intrinsic metrics on graphs: a survey. In: Mathematical Technology of Networks: Bielefeld, Springer, Cham pp. 81-119, (2015) · Zbl 1335.05058
[16] Lim, L-H, Hodge Laplacians on graphs, SIAM Rev., 62, 3, 685-715 (2020) · Zbl 1453.05061 · doi:10.1137/18M1223101
[17] Miranda, P.; Parra, D.; Raikov, G., Spectral asymptotics at thresholds for a Dirac-type operator on Z2, J. Funct. Anal., 284, 2 (2023) · Zbl 1502.35071 · doi:10.1016/j.jfa.2022.109743
[18] Nakamura, S.; Tadano, Y., On a continuum limit of discrete Schrödinger operators on square lattice, J. Spectr. Theory, 11, 1, 355-367 (2021) · Zbl 1487.47027 · doi:10.4171/JST/343
[19] Parra, D., Spectral and scattering theory for Gauss-Bonnet operators on perturbed topological crystals, J. Math. Anal. Appl., 452, 2, 792-813 (2017) · Zbl 1365.81054 · doi:10.1016/j.jmaa.2017.03.002
[20] Prado, R., de Oliveira, C., de Oliveira, E.: Density of states and Lifshitz tails for discrete 1D random Dirac operators. Math. Phys. Anal. Geom. 24(3), 30 (2021) · Zbl 07421272
[21] Post, O.: Spectral analysis on graph-like spaces. Vol. 2039. Lecture Notes in Mathematics. Springer, Heidelberg, (2012), pp. xvi+431 · Zbl 1247.58001
[22] Post, O., Zimmer, S.: Generalised norm resolvent convergence: comparison of different concepts. (2022). eprint: arXiv:2202.03234
[23] Schmidt, K.M., Umeda, T.: Continuum limits for discrete Dirac operators on 2D square lattices. (2021). eprint: arXiv:2109.04052
[24] Thaller, B.: The Dirac equation. Texts and Monographs in Physics. Springer- Verlag, Berlin, (1992), pp. xviii+357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.