×

Quantum statistics in network geometry with fractional flavor. (English) Zbl 1456.81483

Summary: Quantum statistics have been shown to emerge to describe the statistical properties of growing networks when nodes are associated to a fitness value. Recently it has been shown that quantum statistics emerge also in a growing simplicial complex model called Network Geometry with Flavor (NGF) which allows for the description of many-body interactions between the nodes. This model depends on an external parameter called flavor that is responsible for the underlying topology of the simplicial complex. When the flavor takes the value \(s=-1\) the \(d\)-dimensional simplicial complex is a manifold in which every \((d-1)\)-dimensional face can only have an incidence number \(n_\alpha\in\{0, 1\}\). In this case the faces of the simplicial complex are naturally described by the Bose-Einstein, Boltzmann and Fermi-Dirac distribution depending on their dimension. In this paper we extend the study of NGF to fractional values of the flavor \(s=-1/m\) in which every \((d-1)\)-dimensional face can only have incidence number \(n_\alpha\in\{0,1,2,\dots,m\}\). We show that in this case the statistical properties of the faces of the simplicial complex are described by the Bose-Einstein or the Fermi-Dirac distribution only. Finally we comment on the spectral properties of the networks constituting the underlying structure of the considered simplicial complexes.

MSC:

81V70 Many-body theory; quantum Hall effect
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Bianconi G and Barabási A L 2001 Phys. Rev. Lett.86 5632 · doi:10.1103/PhysRevLett.86.5632
[2] Bianconi G and Barabási A L 2001 Europhys. Lett.54 436 · doi:10.1209/epl/i2001-00260-6
[3] Bianconi G 2002 Phys. Rev. E 66 036116 · doi:10.1103/PhysRevE.66.036116
[4] Bianconi G 2002 Phys. Rev. E 66 056123 · doi:10.1103/PhysRevE.66.056123
[5] Ergün G and Rodgers G J 2002 Physica A 303 261 · Zbl 0978.90012 · doi:10.1016/S0378-4371(01)00408-3
[6] Borgs C, Chayes J, Daskalakis C and Roch S 2007 Proc. of the 39th Annual ACM Symp. on Theory of Computing pp 135-44
[7] Bianconi G 2005 Europhys. Lett.71 1029 · doi:10.1209/epl/i2005-10167-2
[8] Barabási A L 2016 Network Science (Cambridge: Cambridge University Press) · Zbl 1353.94001
[9] Godréche C and Luck J M 2010 J. Stat. Mech. P07031
[10] Pastor-Satorras R and Vespignani A 2007 Evolution and structure of the Internet: a Statistical Physics Approach (Cambridge: Cambridge University Press)
[11] Adamic L A, Huberman B A, Barabási A L, Albert R, Jeong H and Bianconi G 2000 Science287 2115 · doi:10.1126/science.287.5461.2115a
[12] Bianconi G and Rahmede C 2015 Sci. Rep.5 13979 · doi:10.1038/srep13979
[13] Bianconi G and Rahmede C 2016 Phys. Rev. E 93 032315 · doi:10.1103/PhysRevE.93.032315
[14] Bianconi G and Rahmede C 2017 Sci. Rep.7 41974 · doi:10.1038/srep41974
[15] Courtney O T and Bianconi G 2017 Phys. Rev. E 95 062301 · doi:10.1103/PhysRevE.95.062301
[16] Mulder D and Bianconi G 2018 J. Stat. Phys.73 783 · Zbl 1476.90072 · doi:10.1007/s10955-018-2115-9
[17] Wu Z, Menichetti G, Rahmede C and Bianconi G 2014 Sci. Rep.5 10073 · doi:10.1038/srep10073
[18] Bianconi G 2015 Europhys. Lett.111 56001 · doi:10.1209/0295-5075/111/56001
[19] Courtney O T and Bianconi G 2016 Phys. Rev. E 93 062311 · doi:10.1103/PhysRevE.93.062311
[20] Giusti C, Ghrist R and Bassett D S 2016 J. Comput. Neurosci.41 1 · doi:10.1007/s10827-016-0608-6
[21] Salnikov V, Cassese D and Lambiotte R 2018 Eur. J. Phys.14 014001
[22] Kahle M 2014 AMS Contemp. Math.620 201 · doi:10.1090/conm/620/12367
[23] Ambjorn J, Jurkiewicz J and Loll R 2005 Phys. Rev. D 72 064014 · doi:10.1103/PhysRevD.72.064014
[24] Oriti D 2001 Rep. Prog. Phys.64 1703 · doi:10.1088/0034-4885/64/12/203
[25] Lionni L 2018 Colored Discrete Spaces: Higher Dimensional Combinatorial Maps and Quantum Gravity (Berlin: Springer) · Zbl 1406.81007 · doi:10.1007/978-3-319-96023-4
[26] Ben Ali Zinati R, Codello A and Gori G 2019 J. High Energy Phys.2019 152 · doi:10.1007/JHEP04(2019)152
[27] Petri P et al 2014 J. R. Soc. Interface11 20140873 · doi:10.1098/rsif.2014.0873
[28] Salnikov V, Cassese D D, Lambiotte R and Jones N S 2018 Appl. Netw. Sci.3 37 · doi:10.1007/s41109-018-0074-3
[29] Šuvakov M, Andjelković M and Tadić B 2018 Sci. Rep.8 1987 · doi:10.1038/s41598-018-20398-x
[30] Tumminello M, Aste T, Di Matteo T and Mantegna R N 2005 Proc. Natl Acad. Sci.102 10421 · doi:10.1073/pnas.0500298102
[31] Petri G and Barrat A 2018 Phys. Rev. Lett.121 228301 · doi:10.1103/PhysRevLett.121.228301
[32] Bianconi G and Ziff R M 2018 Phys. Rev. E 98 052308 · doi:10.1103/PhysRevE.98.052308
[33] Millán A P, Torres J J and Bianconi G 2018 Sci. Rep.8 9910 · doi:10.1038/s41598-018-28236-w
[34] Millán A P, Torres J J and Bianconi G 2019 Phys. Rev. E 99 022307 · doi:10.1103/PhysRevE.99.022307
[35] Skardal P S and Arenas A 2019 Phys. Rev. Lett.122 248301 · doi:10.1103/PhysRevLett.122.248301
[36] Iacopini I, Petri G, Barrat A and Latora V 2019 Nat. Commun.10 2485 · doi:10.1038/s41467-019-10431-6
[37] Gentile G 1942 Nuovo Cimento17 109 · Zbl 0027.18703 · doi:10.1007/BF02960192
[38] Wilczek F 1990 Fractional Statistics and Anyon Superconductivity vol 5 (Singapore: World Scientific) · doi:10.1142/0961
[39] Khare A 1997 Fractional Statistics and Quantum Theory (Singapore: World Scientific) · Zbl 1038.81556
[40] Barabási A L and Albert R 1999 Science286 509 · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[41] Dorogovtsev S N, Mendes J F F and Samukhin A N 2001 Phys. Rev. E 63 062101 · doi:10.1103/PhysRevE.63.062101
[42] Andrade J S Jr, Herrmann H J, Andrade R F S and Da Silva L R 2005 Phys. Rev. Lett.94 018702 · doi:10.1103/PhysRevLett.94.018702
[43] Dorogovtsev S N and Mendes J F F 2003 Evolution of Networks: from Biological Nets to the Internet and WWW (Oxford: Oxford University Press) · Zbl 1109.68537 · doi:10.1093/acprof:oso/9780198515906.001.0001
[44] Rammal R and Toulouse G 1983 J. Phys. Lett.44 1 · doi:10.1051/jphyslet:019830044010100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.