×

The Gauss-Bonnet operator of an infinite graph. (English) Zbl 1323.05095

Summary: We propose a general condition, to ensure essential self-adjointness for the Gauss-Bonnet operator \(D=d+\delta\), based on a notion of completeness of Chernoff. This gives essential self-adjointness of the Laplace operator both for functions and 1-forms on infinite graphs. This is used to extend Flanders result concerning solutions of Kirchhoff’s laws.

MSC:

05C63 Infinite graphs
05C12 Distance in graphs
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
39A12 Discrete version of topics in analysis
47B25 Linear symmetric and selfadjoint operators (unbounded)

References:

[1] Anghel, N.: An abstract index theorem on noncompact Riemannian manifolds. Houston J. Math. 19(2), 223-237 (1993) · Zbl 0790.58040
[2] Ayadi, H.: Semi-Fredholmness of the discrete Gauß-Bonnet operator, preprint (2013) · Zbl 1488.39005
[3] Carmesin, J.: A characterization of the locally finite networks admitting non-constant harmonic functions. Potential Anal. 37, 229-245 (2012) · Zbl 1252.31006 · doi:10.1007/s11118-011-9254-9
[4] Chernoff, P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Funct. Anal. 12, 401-414 (1973) · Zbl 0263.35066
[5] Colin de Verdière, Y.: Théorème de Kirchhoff et théorie de Hodge, Séminaire de théorie spectrale et géométrie, Chambéry-Grenoble, 9, 89-94 (1990-1991) · Zbl 0749.58005
[6] Colin de Verdière, Y.: Spectres de graphes, Cours Spécialisés [Specialized Courses], 4. Société Mathématique de France, Paris (1998) · Zbl 0913.05071
[7] Colin de Verdière, Y., Torki-Hamza, N., Truc, F.: Essential self-adjointness for combinatorial Schrödinger operators II-metrically non complete graphs. Math. Phys. Anal. Geom. 14, 21-38 (2011) · Zbl 1244.05155 · doi:10.1007/s11040-010-9086-7
[8] Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787-794 (1984) · Zbl 0512.39001 · doi:10.1090/S0002-9947-1984-0743744-X
[9] Dodziuk, J., Karp, L.: Spectral and function theory for combinatorial Laplacians. Geometry of random motion (Ithaca, N.Y., 1987) 25-40, Contemp. Math., 73, Amer. Math. Soc., Providence (1988) · Zbl 0227.94023
[10] Doyle, P.G., Snell, J.L.: Random walks and electric networks. Carus Math. Monogr. 22, (1999) · Zbl 0583.60065
[11] Flanders, H.: Infinite networks: I- resistive networks. IEEE Trans. Circuit Theory 18(3), 326-331 (1971) · Zbl 0227.94023 · doi:10.1109/TCT.1971.1083286
[12] Georgakopoulos, A.: Uniqueness of electrical currents in a network of finite total resistance. J. London Math. Soc. 82(2), 256-272 (2010) · Zbl 1209.05116 · doi:10.1112/jlms/jdq034
[13] Golénia, S., Haugomat, T.: On the A.C. spectrum of 1D discrete Dirac operator. Meth. Funct. An Top. arXiv:1207.3516 (2012) · Zbl 1324.47066
[14] Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 265(8), 1556-1578 (2013) · Zbl 1435.35400 · doi:10.1016/j.jfa.2013.06.004
[15] Jorgensen, P.E.T., Pearse, E.P.J.: Operator theory of electrical resistance networks. Springer’s Universitext series, p 380. arXiv:0806.3881 (2008) · Zbl 0790.58040
[16] Keller, M., Lenz, D.: Unbounded Laplacians on graphs: basic spectral properties and the heat equation. Math. Model. Nat. Phenom. 5(4), 198-224 (2010) · Zbl 1207.47032 · doi:10.1051/mmnp/20105409
[17] Keller, M., Lenz, D.: Dirichlet forms and stochastic completneness of graphs and subgraphs. J. Reine Angew. Math. 666, 189-223 (2012). arXiv:0904.2985 · Zbl 1252.47090
[18] Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press. Current version available at http://mypage.iu.edu/rdlyons/ (2014) · Zbl 1376.05002
[19] Masamune, J.: A Liouville property and its application to the Laplacian of an infinite graph. Contemp. Math. 484, 103-115 (2009) · Zbl 1181.58018 · doi:10.1090/conm/484/09468
[20] Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Academic Press, (1980) · Zbl 0459.46001
[21] Soardi, P.M.: Potential Theory on infinite Networks, Lecture Notes in Mathematics 1590. Springer, Berlin (1994) · Zbl 0818.31001
[22] Thomassen, C.: Resistances and currents in infinite networks. J. Comb. Theory B 49, 87-102 (1990) · Zbl 0706.94029 · doi:10.1016/0095-8956(90)90065-8
[23] Torki-Hamza, N.: Laplaciens de graphes infinis I Graphes métriquement complets. Confluentes Mathematici 2(3), 333-350 (2010) · Zbl 1203.05109 · doi:10.1142/S179374421000020X
[24] Torki-Hamza, N.: Essential Self-adjointness for combinatorial Schrödinger Operators I- Metrically complete graphs, pp 1-22. arXiv:1201.4644, Translation of [23] with some add, correction and update · Zbl 0512.39001
[25] Zemanian, A.H.: Infinite electrical networks. Camb. Tracts Math. 101, 324 (2008) · Zbl 1138.94300
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.