×

Quantum entropy couples matter with geometry. (English) Zbl 07909769

Summary: We propose a theory for coupling matter fields with discrete geometry on higher-order networks, i.e. cell complexes. The key idea of the approach is to associate to a higher-order network the quantum entropy of its metric. Specifically we propose an action having two contributions. The first contribution is proportional to the logarithm of the volume associated to the higher-order network by the metric. In the vacuum this contribution determines the entropy of the geometry. The second contribution is the quantum relative entropy between the metric of the higher-order network and the metric induced by the matter and gauge fields. The induced metric is defined in terms of the topological spinors and the discrete Dirac operators. The topological spinors, defined on nodes, edges and higher-dimensional cells, encode for the matter fields. The discrete Dirac operators act on topological spinors, and depend on the metric of the higher-order network as well as on the gauge fields via a discrete version of the minimal substitution. We derive the coupled dynamical equations for the metric, the matter and the gauge fields, providing an information theory principle to obtain the field theory equations in discrete curved space.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

References:

[1] Bekenstein, J. D., Black holes and entropy, Phys. Rev. D, 7, 2333, 1973 · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[2] Bekenstein, J. D., Generalized second law of thermodynamics in black-hole physics, Phys. Rev. D, 9, 3292, 1974 · doi:10.1103/PhysRevD.9.3292
[3] Hawking, S. W., Particle creation by black holes, Commun. Math. Phys., 43, 199-220, 1975 · Zbl 1378.83040 · doi:10.1007/BF02345020
[4] De Chiara, G.; Montangero, S.; Calabrese, P.; Fazio, R., Entanglement entropy dynamics of Heisenberg chains, J. Stat. Mech., 2006 · doi:10.1088/1742-5468/2006/03/P03001
[5] Calabrese, P.; Cardy, J., Entanglement entropy and quantum field theory, J. Stat. Mech., 2004 · Zbl 1082.82002 · doi:10.1088/1742-5468/2004/06/P06002
[6] Calabrese, P.; Cardy, J., Entanglement entropy and conformal field theory, J. Phys. A: Math. Theor., 42, 2009 · Zbl 1179.81026 · doi:10.1088/1751-8113/42/50/504005
[7] Anza, F.; Crutchfield, J. P., Quantum information dimension and geometric entropy, PRX Quantum, 3, 2022 · doi:10.1103/PRXQuantum.3.020355
[8] Jacobson, T., Thermodynamics of spacetime: the Einstein equation of state, Phys. Rev. Lett., 75, 1260, 1995 · Zbl 1020.83609 · doi:10.1103/PhysRevLett.75.1260
[9] Carroll, S. M.; Remmen, G. N., What is the entropy in entropic gravity?, Phys. Rev. D, 93, 2016 · doi:10.1103/PhysRevD.93.124052
[10] Chirco, G.; Haggard, H. M.; Riello, A.; Rovelli, C., Spacetime thermodynamics without hidden degrees of freedom, Phys. Rev. D, 90, 2014 · doi:10.1103/PhysRevD.90.044044
[11] Chirco, G.; Liberati, S., Nonequilibrium thermodynamics of spacetime: the role of gravitational dissipation, Phys. Rev. D, 81, 2010 · doi:10.1103/PhysRevD.81.024016
[12] ’t Hooft, G., The holographic principle, Basics and Highlights in Fundamental Physics, pp 72-100, 2001, World Scientific
[13] Susskind, L., The world as a hologram, J. Math. Phys., 36, 6377-96, 1995 · Zbl 0850.00013 · doi:10.1063/1.531249
[14] Witten, E., Aps medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory, Rev. Mod. Phys., 90, 2018 · doi:10.1103/RevModPhys.90.045003
[15] Shaposhnik, L., Entanglement entropy, local IR/UV connection and MPS in Weyl-deformed geometries, 2022
[16] Bianconi, G., Higher-Order Networks: An Introduction to Simplicial Complexes, 2021, Cambridge University Press · Zbl 1494.82002
[17] Anand, K.; Bianconi, G., Entropy measures for networks: toward an information theory of complex topologies, Phys. Rev. E, 80, 2009 · doi:10.1103/PhysRevE.80.045102
[18] Anand, K.; Bianconi, G., Gibbs entropy of network ensembles by cavity methods, Phys. Rev. E, 82, 2010 · doi:10.1103/PhysRevE.82.011116
[19] Bianconi, G., Grand canonical ensembles of sparse networks and Bayesian inference, Entropy, 24, 633, 2022 · doi:10.3390/e24050633
[20] Radicchi, F.; Krioukov, D.; Hartle, H.; Bianconi, G., Classical information theory of networks, J. Phys. Complex., 1, 2020 · doi:10.1088/2632-072X/ab9447
[21] Anand, K.; Bianconi, G.; Severini, S., Shannon and von Neumann entropy of random networks with heterogeneous expected degree, Phys. Rev. E, 83, 2011 · doi:10.1103/PhysRevE.83.036109
[22] De Domenico, M.; Biamonte, J., Spectral entropies as information-theoretic tools for complex network comparison, Phys. Rev. X, 6, 2016 · doi:10.1103/PhysRevX.6.041062
[23] De Domenico, M.; Nicosia, V.; Arenas, A.; Latora, V., Structural reducibility of multilayer networks, Nat. Commun., 6, 1-9, 2015 · doi:10.1038/ncomms7864
[24] Villegas, P.; Gili, T.; Caldarelli, G.; Gabrielli, A., Laplacian renormalization group for heterogeneous networks, Nat. Phys., 19, 445-50, 2023 · doi:10.1038/s41567-022-01866-8
[25] Villegas, P.; Gabrielli, A.; Santucci, F.; Caldarelli, G.; Gili, T., Laplacian paths in complex networks: information core emerges from entropic transitions, Phys. Rev. Res., 4, 2022 · doi:10.1103/PhysRevResearch.4.033196
[26] Ghavasieh, A.; De Domenico, M., Diversity of information pathways drives sparsity in real-world networks, Nat. Phys., 20, 1-8, 2024 · doi:10.1038/s41567-023-02330-x
[27] Garnerone, S.; Giorda, P.; Zanardi, P., Bipartite quantum states and random complex networks, New J. Phys., 14, 2012 · Zbl 1448.81040 · doi:10.1088/1367-2630/14/1/013011
[28] Bianconi, G., The topological Dirac equation of networks and simplicial complexes, J. Phys. Complex., 2, 2021 · doi:10.1088/2632-072X/ac19be
[29] Battiston, F., The physics of higher-order interactions in complex systems, Nat. Phys., 17, 1093-8, 2021 · doi:10.1038/s41567-021-01371-4
[30] Millán, A. P.; Torres, J. J.; Bianconi, G., Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124, 2020 · doi:10.1103/PhysRevLett.124.218301
[31] Carletti, T.; Giambagli, L.; Bianconi, G., Global topological synchronization on simplicial and cell complexes, Phys. Rev. Lett., 130, 2023 · doi:10.1103/PhysRevLett.130.187401
[32] Calmon, L.; Schaub, M. T.; Bianconi, G., Dirac signal processing of higher-order topological signals, New J. Phys., 25, 2023 · Zbl 07869190 · doi:10.1088/1367-2630/acf33c
[33] Nurisso, M.; Arnaudon, A.; Lucas, M.; Peach, R. L.; Expert, P.; Vaccarino, F.; Petri, G., A unified framework for simplicial Kuramoto models, 2023
[34] Ziegler, C.; Sebastian Skardal, P.; Dutta, H.; Taylor, D., Balanced Hodge Laplacians optimize consensus dynamics over simplicial complexes, Chaos, 32, 2022 · Zbl 1542.05188 · doi:10.1063/5.0080370
[35] Muolo, R.; Carletti, T.; Bianconi, G., The three way Dirac operator and dynamical turing and Dirac induced patterns on nodes and links, Chaos Solitons Fractals, 178, 2024 · doi:10.1016/j.chaos.2023.114312
[36] Ghorbanchian, R.; Restrepo, J. G.; Torres, J. J.; Bianconi, G., Higher-order simplicial synchronization of coupled topological signals, Commun. Phys., 4, 120, 2021 · doi:10.1038/s42005-021-00605-4
[37] Majhi, S.; Perc, M.; Ghosh, D., Dynamics on higher-order networks: a review, J. R. Soc. Interface, 19, 2022 · doi:10.1098/rsif.2022.0043
[38] Kogut, J.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395, 1975 · doi:10.1103/PhysRevD.11.395
[39] Becher, P.; Joos, H., The Dirac-Kähler equation and fermions on the lattice, Z. Phys. C, 15, 343-65, 1982 · doi:10.1007/BF01614426
[40] Kruglov, S. I., Dirac-Kähler equation, Int. J. Theor. Phys., 41, 653-87, 2002 · Zbl 1026.81021 · doi:10.1023/A:1015280310677
[41] Banks, T.; Dothan, Y.; Horn, D., Geometric fermions, Phys. Lett. B, 117, 413-7, 1982 · doi:10.1016/0370-2693(82)90571-8
[42] Bianconi, G., Dirac gauge theory for topological spinors in 3+1 dimensional networks, J. Phys. A: Math. Theor., 56, 2023 · Zbl 1525.83012 · doi:10.1088/1751-8121/acdc6a
[43] Baccini, F.; Geraci, F.; Bianconi, G., Weighted simplicial complexes and their representation power of higher-order network data and topology, Phys. Rev. E, 106, 2022 · doi:10.1103/PhysRevE.106.034319
[44] Bianconi, G., The mass of simple and higher-order networks, J. Phys. A: Math. Theor., 57, 2023 · Zbl 1536.81089 · doi:10.1088/1751-8121/ad0fb5
[45] Nambu, Y.; Jona-Lasinio, G., Dynamical model of elementary particles based on an analogy with superconductivity. I, Phys. Rev., 122, 345, 1961 · doi:10.1103/PhysRev.122.345
[46] Dirac, P. A M., The quantum theory of the electron, Proc. R. Soc. A, 117, 610-24, 1928 · JFM 54.0973.01 · doi:10.1098/rspa.1928.0023
[47] Nakamura, S., Equivalence of the staggered fermion hamiltonan and the discrete Hodge-Dirac operator on square lattices, 2024
[48] Connes, A.; Marcolli, M., Noncommutative Geometry, Quantum Fields and Motives, vol 55, 2019, American Mathematical Society
[49] Majid, S., Dirac operator associated to a quantum metric, 2023
[50] Cipriani, F.; Guido, D.; Isola, T.; Sauvageot, J-L, Spectral triples for the Sierpinski gasket, J. Funct. Anal., 266, 4809-69, 2014 · Zbl 1316.28006 · doi:10.1016/j.jfa.2014.02.013
[51] Davies, E. B., Analysis on graphs and noncommutative geometry, J. Funct. Anal., 111, 398-430, 1993 · Zbl 0793.46043 · doi:10.1006/jfan.1993.1019
[52] Post, O., First order approach and index theorems for discrete and metric graphs, Ann. Henri Poincaré, 10, 823-66, 2009 · Zbl 1206.81044 · doi:10.1007/s00023-009-0001-3
[53] Knill, O., The Dirac operator of a graph, 2013
[54] Lloyd, S.; Garnerone, S.; Zanardi, P., Quantum algorithms for topological and geometric analysis of data, Nat. Commun., 7, 1-7, 2016 · doi:10.1038/ncomms10138
[55] Delporte, N.; Sen, S.; Toriumi, R., Dirac walks on regular trees, 2023
[56] Casiday, B.; Contreras, I.; Meyer, T.; Mi, S.; Spingarn, E., Laplace and Dirac operators on graphs, Linear Multilinear Algebr., 72, 325-65, 2024 · Zbl 1533.05151 · doi:10.1080/03081087.2022.2158297
[57] Nokkala, J.; Piilo, J.; Bianconi, G., Complex quantum networks: a topical review, J. Phys. A: Math. Theor., 57, 2024 · Zbl 07871238 · doi:10.1088/1751-8121/ad41a6
[58] Böttcher, L.; Porter, M. A., Complex networks with complex weights, Phys. Rev. E, 109, 2024 · doi:10.1103/PhysRevE.109.024314
[59] Tian, Y.; Lambiotte, R., Structural balance and random walks on complex networks with complex weights, SIAM J. Math. Data Sci., 6, 372, 2024 · Zbl 1539.05149 · doi:10.1137/23M1584265
[60] Sorce, J., Notes on the type classification of von neumann algebras, 2023
[61] Peterson, J., Notes on von Neumann Algebras, 2013, Vanderbilt University
[62] Ciaglia, F. M.; Di Nocera, F.; Jost, J.; Schwachhöfer, L., Parametric models and information geometry on W*-algebras, Inf. Geom., 7, 329-54, 2024 · Zbl 07789558 · doi:10.1007/s41884-022-00094-6
[63] Bianconi, G.; Barabási, A-L’o, Bose-Einstein condensation in complex networks, Phys. Rev. Lett., 86, 5632, 2001 · doi:10.1103/PhysRevLett.86.5632
[64] Bianconi, G., Quantum statistics in complex networks, Phys. Rev. E, 66, 2002 · doi:10.1103/PhysRevE.66.056123
[65] Wu, Z.; Menichetti, G.; Rahmede, C.; Bianconi, G., Emergent complex network geometry, Sci. Rep., 5, 1-12, 2015 · doi:10.1038/srep10073
[66] Bianconi, G.; Rahmede, C., Network geometry with flavor: from complexity to quantum geometry, Phys. Rev. E, 93, 2016 · doi:10.1103/PhysRevE.93.032315
[67] Trugenberger, C. A., Quantum gravity as an information network self-organization of a 4D Universe, Phys. Rev. D, 92, 2015 · doi:10.1103/PhysRevD.92.084014
[68] Trugenberger, C. A., Combinatorial quantum gravity: geometry from random bits, J. High Energy Phys., JHEP09(2017)045, 2017 · Zbl 1382.83046 · doi:10.1007/JHEP09(2017)045
[69] Kleftogiannis, I.; Amanatidis, I., Physics in nonfixed spatial dimensions via random networks, Phys. Rev. E, 105, 2022 · doi:10.1103/PhysRevE.105.024141
[70] Kleftogiannis, I.; Amanatidis, I., Emergent spacetime from purely random structures, 2022
[71] Rovelli, C.; Vidotto, F., Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory, 2015, Cambridge University Press · Zbl 1432.81065
[72] Codello, A.; Percacci, R.; Rahmede, C., Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Ann. Phys., NY, 324, 414-69, 2009 · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[73] Donà, P.; Eichhorn, A.; Percacci, R., Matter matters in asymptotically safe quantum gravity, Phys. Rev. D, 89, 2014 · doi:10.1103/PhysRevD.89.084035
[74] Lionni, L., Colored Discrete Spaces: Higher Dimensional Combinatorial Maps and Quantum Gravity, 2018, Springer · Zbl 1406.81007
[75] Ambjørn, J.; Jurkiewicz, J.; Loll, R., Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett., 93, 2004 · doi:10.1103/PhysRevLett.93.131301
[76] Benedetti, D., Fractal properties of quantum spacetime, Phys. Rev. Lett., 102, 2009 · doi:10.1103/PhysRevLett.102.111303
[77] Baez, J. C., Spin networks in gauge theory, Adv. Math., 117, 253-72, 1996 · Zbl 0843.58012 · doi:10.1006/aima.1996.0012
[78] Rothe, H. J., Lattice Gauge Theories: An Introduction, 2012, World Scientific Publishing Company · Zbl 1255.81001
[79] Berti, E., Testing general relativity with present and future astrophysical observations, Class. Quantum Grav., 32, 2015 · doi:10.1088/0264-9381/32/24/243001
[80] Zohar, E.; Farace, A.; Reznik, B.; Ignacio Cirac, J., Digital lattice gauge theories, Phys. Rev. A, 95, 2017 · doi:10.1103/PhysRevA.95.023604
[81] Carmen Banuls, M., Simulating lattice gauge theories within quantum technologies, Eur. Phys. J. D, 74, 1-42, 2020 · doi:10.1140/epjd/e2020-100571-8
[82] Dalmonte, M.; Montangero, S., Lattice gauge theory simulations in the quantum information era, Contemp. Phys., 57, 388-412, 2016 · doi:10.1080/00107514.2016.1151199
[83] Ollivier, Y., Ricci curvature of metric spaces, C. R. Math., 345, 643-6, 2007 · Zbl 1132.53011 · doi:10.1016/j.crma.2007.10.041
[84] Samal, A.; Sreejith, R. P.; Gu, J.; Liu, S.; Saucan, E.; Jost, J., Comparative analysis of two discretizations of Ricci curvature for complex networks, Sci. Rep., 8, 8650, 2018 · doi:10.1038/s41598-018-27001-3
[85] Ni, C-C; Lin, Y-Y; Luo, F.; Gao, J., Community detection on networks with Ricci flow, Sci. Rep., 9, 9984, 2019 · doi:10.1038/s41598-019-46380-9
[86] Devriendt, K.; Lambiotte, R., Discrete curvature on graphs from the effective resistance, J. Phys. Complex., 3, 2022 · doi:10.1088/2632-072X/ac730d
[87] Gosztolai, A.; Arnaudon, A., Unfolding the multiscale structure of networks with dynamical Ollivier-Ricci curvature, Nat. Commun., 12, 4561, 2021 · doi:10.1038/s41467-021-24884-1
[88] Topping, J.; Di Giovanni, F.; Paul Chamberlain, B.; Dong, X.; Bronstein, M. M., Understanding over-squashing and bottlenecks on graphs via curvature, 2021
[89] Friston, K., The free-energy principle: a unified brain theory?, Nat. Rev. Neurosci., 11, 127-38, 2010 · doi:10.1038/nrn2787
[90] Citti, G.; Sarti, A., A gauge field model of modal completion, J. Math. Imaging Vis., 52, 267-84, 2015 · Zbl 1317.94021 · doi:10.1007/s10851-015-0557-0
[91] Chamberlain, B.; Rowbottom, J.; Eynard, D.; Di Giovanni, F.; Dong, X.; Bronstein, M., Beltrami flow and neural diffusion on graphs, vol 34, pp 1594-609, 2021
[92] Caselles, V.; Kimmel, R.; Sapiro, G., Geodesic active contours, Int. J. Comput. Vis., 22, 61-79, 1997 · Zbl 0894.68131 · doi:10.1023/A:1007979827043
[93] He, Y-H, Machine-learning mathematical structures, Int. J. Data Sci. Math. Sci., 1, 23-47, 2023 · Zbl 07707200 · doi:10.1142/S2810939222500010
[94] Thaller, B., The Dirac equation, 2013, Springer Science & Business Media
[95] Witten, E., Supersymmetry and Morse theory, J. Differ. Geom., 17, 661-92, 1982 · Zbl 0499.53056 · doi:10.4310/jdg/1214437492
[96] Hansen, J.; Ghrist, R., Toward a spectral theory of cellular sheaves, J. Appl. Comput. Topol., 3, 315-58, 2019 · Zbl 1439.05137 · doi:10.1007/s41468-019-00038-7
[97] Gong, X.; Higham, D. J.; Zygalakis, K.; Bianconi, G., Higher-order connection laplacians for directed simplicial complexes, J. Phys. Complex., 5, 2024 · doi:10.1088/2632-072X/ad353b
[98] Eckmann, B., Harmonische funktionen und randwertaufgaben in einem komplex, Comment. Math. Helv., 17, 240-55, 1944 · Zbl 0061.41106 · doi:10.1007/BF02566245
[99] Horak, D.; Jost, J., Spectra of combinatorial Laplace operators on simplicial complexes, Adv. Math., 244, 303-36, 2013 · Zbl 1290.05103 · doi:10.1016/j.aim.2013.05.007
[100] Aschieri, P.; Dimitrijević, M.; Meyer, F.; Wess, J., Noncommutative geometry and gravity, Class. Quantum Grav., 23, 1883, 2006 · Zbl 1091.83022 · doi:10.1088/0264-9381/23/6/005
[101] Vassilevich, D. V., Heat kernel expansion: user’s manual, Phys. Rep., 388, 279-360, 2003 · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[102] Tishby, N.; Pereira, F. C.; Bialek, W., The information bottleneck method, 2000
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.