×

Numerical methods for backward stochastic differential equations: a survey. (English) Zbl 1515.65023

Summary: Backward Stochastic Differential Equations (BSDEs) have been widely employed in various areas of social and natural sciences, such as the pricing and hedging of financial derivatives, stochastic optimal control problems, optimal stopping problems and gene expression. Most BSDEs cannot be solved analytically and thus numerical methods must be applied to approximate their solutions. There have been a variety of numerical methods proposed over the past few decades as well as many more currently being developed. For the most part, they exist in a complex and scattered manner with each requiring a variety of assumptions and conditions. The aim of the present work is thus to systematically survey various numerical methods for BSDEs, and in particular, compare and categorize them, for further developments and improvements. To achieve this goal, we focus primarily on the core features of each method based on an extensive collection of 333 references: the main assumptions, the numerical algorithm itself, key convergence properties and advantages and disadvantages, to provide an up-to-date coverage of numerical methods for BSDEs, with insightful summaries of each and a useful comparison and categorization.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C05 Monte Carlo methods
93E20 Optimal stochastic control
49L20 Dynamic programming in optimal control and differential games
60H07 Stochastic calculus of variations and the Malliavin calculus
68T07 Artificial neural networks and deep learning
65-02 Research exposition (monographs, survey articles) pertaining to numerical analysis

References:

[1] S. Aazizi. Discrete-time approximation of decoupled forward-backward stochastic differential equations driven by pure jump Lévy processes. Advances in Applied Probability, 45(3):791-821, 2013. · Zbl 1274.60216
[2] Y. Achdou and M. Laurière. Mean field games and applications: Numerical aspects. In P. Cardaliaguet and A. Porretta, editors, Mean Field Games: Cetraro, Italy 2019, pages 249-307. Springer International Publishing, Cham, 2020. · Zbl 1457.91057
[3] A. Agarwal and J. Claisse. Branching diffusion representation of semi-linear elliptic PDEs and estimation using Monte Carlo method. Stochastic Processes and their Applications, 130(8):5006-5036, 2020. · Zbl 1440.35125
[4] A. Agarwal, S. D. Marco, E. Gobet, J. G. López-Salas, F. Noubiagain, and A. Zhou. Numerical approximations of McKean anticipative backward stochastic differential equations arising in initial margin requirements. ESAIM: ProcS, 65:1-26, 2019. · Zbl 1455.65013
[5] S. Alanko and M. Avellaneda. Reducing variance in the numerical solution of BSDEs. Comptes Rendus Mathematique, 351(3):135-138, 2013. · Zbl 1269.65004
[6] K. Andersson, A. Andersson, and C. W. Oosterlee. Convergence of a robust deep FBSDE method for stochastic control. SIAM Journal on Scientific Computing, 45(1):A226-A255, 2023. · Zbl 1511.93120
[7] A. Angiuli, C. V. Graves, H. Li, J.-F. Chassagneux, F. Delarue, and R. Carmona. Cemracs 2017: numerical probabilistic approach to MFG. ESAIM: ProcS, 65:84-113, 2019. · Zbl 1454.91025
[8] S. Ankirchner and A. Fromm. Solving fully coupled FBSDEs by minimizing a directly calculable error functional. hal-01915772, 2018.
[9] F. Antonelli and A. Kohatsu-Higa. Filtration stability of backward sde’s. Stochastic Analysis and Applications, 18(1):11-37, 2000. · Zbl 0953.60044
[10] Y. Armenti and S. Crépey. Central clearing valuation adjustment. SIAM Journal on Financial Mathematics, 8(1):274-313, 2017. · Zbl 1367.91185
[11] V. Bally and G. Pagès. Error analysis of the optimal quantization algorithm for obstacle problems. Stochastic Processes and their Applications, 106(1):1-40, 2003. · Zbl 1075.60523
[12] V. Bally and G. Pagès. A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli, 9(6):1003-1049, 2003. · Zbl 1042.60021
[13] V. Bally, G. Pagès, and J. Printems. A stochastic quantization method for nonlinear problems. Monte Carlo Methods and Applications, 7(1-2):21-34, 2001. · Zbl 1035.65008
[14] F. Bao, R. Archibald, and P. Maksymovych. Lévy backward SDE filter for jump diffusion processes and its applications in material sciences. Communications in Computational Physics, 27(2):589-618, 2019. · Zbl 1473.65012
[15] F. Bao, Y. Cao, and H. Chi. Adjoint forward backward stochastic differential equations driven by jump diffusion processes and its application to nonlinear filtering problems. International Journal for Uncertainty Quantification, 9(2):143-159, 2019. · Zbl 1498.82016
[16] F. Bao, Y. Cao, and J. Yong. Data informed solution estimation for forward-backward stochastic differential equations. Analysis and Applications, 19(03):439-464, 2021. · Zbl 1475.60100
[17] C. Beck, S. Becker, P. Cheridito, A. Jentzen, and A. Neufeld. Deep splitting method for parabolic PDEs. SIAM Journal on Scientific Computing, 43(5):A3135-A3154, 2021. · Zbl 1501.65054
[18] C. Beck, W. E, and A. Jentzen. Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. Journal of Nonlinear Science, 29(4):1563-1619, 2019. · Zbl 1442.91116
[19] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. An overview on deep learning-based approximation methods for partial differential equations. Discrete and Continuous Dynamical Systems - B, 28(6):3697-3746, 2023. · Zbl 07675828
[20] C. Beck, A. Jentzen, and T. Kruse. Nonlinear Monte Carlo methods with polynomial runtime for high-dimensional iterated nested expectations. arXiv:2009.13989, 2020.
[21] S. Becker, A. Jentzen, M. S. Müller, and P. von Wurstemberger. Learning the random variables in Monte Carlo simulations with stochastic gradient descent: Machine learning for parametric PDEs and financial derivative pricing. arXiv:2202.02717, 2022.
[22] C. Bender and R. Denk. A forward scheme for backward SDEs. Stochastic Processes and their Applications, 117:1793-1812, 2007. · Zbl 1131.60054
[23] C. Bender and T. Moseler. Importance sampling for backward SDEs. Stochastic Analysis and Applications, 28(2):226-253, 2010. · Zbl 1188.65004
[24] C. Bender and S. Pokalyuk. Discretization of backward stochastic Volterra integral equations. In Recent Developments in Computational Finance, pages 245-278. World Scientific, 2013. · Zbl 1310.91143
[25] C. Bender, N. Schweizer, and J. Zhuo. A primal-dual algorithm for BSDEs. Mathematical Finance, 27(3):866-901, 2017. · Zbl 1423.91008
[26] C. Bender and J. Steiner. Least-squares Monte Carlo for backward SDEs. In R. A. Carmona, P. Del Moral, P. Hu, and N. Oudjane, editors, Numerical Methods in Finance, pages 257-289, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. · Zbl 1269.91098
[27] C. Bender and J. Steiner. A posteriori estimates for backward SDEs. SIAM/ASA Journal on Uncertainty Quantification, 1(1):139-163, 2013. · Zbl 1282.65019
[28] C. Bender and J. Zhang. Time discretization and Markovian iteration for coupled FBSDEs. The Annals of Applied Probability, 18(1):143 - 177, 2008. · Zbl 1142.65005
[29] C. Bénézet, J.-F. Chassagneux, and C. Reisinger. A numerical scheme for the quantile hedging problem. SIAM Journal on Financial Mathematics, 12(1):110-157, 2021. · Zbl 1459.91217
[30] A. Bensoussan and J.-L. Lions. Applications des Inequations variationnelles en controle stochastique, volume 6 of Methodes mathematicques de l’informatique. Dunod, 1978. · Zbl 0411.49002
[31] J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error: Empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. SIAM Journal on Mathematics of Data Science, 2(3):631-657, 2020. · Zbl 1480.60191
[32] M. Bichuch, A. Capponi, and S. Sturm. Arbitrage-free pricing of XVA - Part II: PDE representation and numerical analysis. arXiv:1502.06106, 2016. · Zbl 1390.91276
[33] M. Bichuch, A. Capponi, and S. Sturm. Arbitrage-free XVA. Mathematical Finance, 28(2):582-620, 2018. · Zbl 1390.91276
[34] J. Bismut. Conjugate convex functions in optimal stochastic control. Journal of Mathematical Analysis and Applications, 44(2):384-404, 1973. · Zbl 0276.93060
[35] J. Blechschmidt and O. G. Ernst. Three ways to solve partial differential equations with neural networks — a review. GAMM-Mitteilungen, 44(2):e202100006, 2021. · Zbl 1530.65137
[36] D. Borkowski and K. Jańczak-Borkowska. Reduction of JPEG artifacts using BSDEs. In WSCG 2021 Proceedings CSRN 3101, 2021. · Zbl 1480.60194
[37] D. Borkowski and K. Jańczak-Borkowska. Approximation of BSDE with non Lipschitz coefficient. Stochastic Analysis and Applications, 40(1):63-77, 2022. · Zbl 1480.60194
[38] A. Borovykh, A. Pascucci, and C. W. Oosterlee. Efficient computation of various valuation adjustments under local Lévy models. SIAM Journal on Financial Mathematics, 9(1):251-273, 2018. · Zbl 1408.91230
[39] B. Bouchard and J.-F. Chassagneux. Discrete-time approximation for continuously and discretely reflected BSDEs. Stochastic Processes and their Applications, 118(12):2269-2293, 2008. · Zbl 1158.60030
[40] B. Bouchard, K. W. Chau, A. Manai, and A. Sid-Ali. Monte-Carlo methods for the pricing of American options: a semilinear BSDE point of view. ESAIM: Proceedings and Surveys, 65:294-308x, 2019. · Zbl 1417.91550
[41] B. Bouchard, I. Ekeland, and N. Touzi. On the Malliavin approach to Monte Carlo approximation of conditional expectations. Finance and Stochastics, 8(1):45-71, 2004. · Zbl 1051.60061
[42] B. Bouchard and R. Elie. Discrete-time approximation of decoupled forward-backward SDE with jumps. Stochastic Processes and their Applications, 118(1):53-75, 2008. · Zbl 1136.60048
[43] B. Bouchard, R. Elie, and L. Moreau. Regularity of BSDEs with a convex constraint on the gains-process. Bernoulli, 24(3):1613-1635, 2018. · Zbl 1426.60068
[44] B. Bouchard, R. Elie, and N. Touzi. Discrete-time approximation of BSDEs and probabilistic schemes for fully nonlinear PDEs. In H. Albrecher, W. J. Runggaldier, and W. Schachermayer, editors, Advanced Financial Modelling, pages 91-124. De Gruyter, 2009. · Zbl 1179.65004
[45] B. Bouchard, X. Tan, and X. Warin. Numerical approximation of general Lipschitz BSDEs with branching processes. ESAIM: Proceedings and Surveys, 65, 2017.
[46] B. Bouchard, X. Tan, X. Warin, and Y. Zou. Numerical approximation of BSDEs using local polynomial drivers and branching processes. Monte Carlo Methods and Applications, 23(4), 2017. · Zbl 1386.65012
[47] B. Bouchard and N. Touzi. Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Processes and their Applications, 111(2):175-206, 2004. · Zbl 1071.60059
[48] B. Bouchard and X. Warin. Monte-Carlo valuation of American options: Facts and new algorithms to improve existing methods. In R. A. Carmona, P. Del Moral, P. Hu, and N. Oudjane, editors, Numerical Methods in Finance, pages 215-255, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. · Zbl 1247.91196
[49] P. Briand, B. Delyon, and J. Mémin. Donsker-type theorem for BSDEs. Electronic Communications in Probability, 6(1):1-14, 2001. · Zbl 0977.60067
[50] P. Briand, B. Delyon, and J. Mémin. On the robustness of backward stochastic differential equations. Stochastic Processes and their Applications, 97(2):229-253, 2002. · Zbl 1058.60041
[51] P. Briand, C. Geiss, S. Geiss, and C. Labart. Donsker-type theorem for BSDEs: rate of convergence. Bernoulli, 27(2):899-929, 2021. · Zbl 1480.60152
[52] P. Briand and C. Labart. Simulation of BSDEs by Wiener chaos expansion. The Annals of Applied Probability, 24(3):1129-1171, 2014. · Zbl 1311.60077
[53] M. Broadie, J. Cvitaniç, and H. Soner. Optimal replication of contingent claims under portfolio constraints. Review of Financial Studies, 11(1):59-79, 1998.
[54] G. Callegaro, A. Gnoatto, and M. Grasselli. A fully quantization-based scheme for FBSDEs. Applied Mathematics and Computation, 441:127666, 2023. · Zbl 1511.65011
[55] S. Campbell, Y. Chen, A. Shrivats, and S. Jaimungal. Deep learning for principal-agent mean field games. arXiv:2110.01127, 2021.
[56] R. Carmona and M. Laurière. Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II—the finite horizon case. The Annals of Applied Probability, 32(6):4065 - 4105, 2022. · Zbl 1505.65243
[57] L.-P. Chaintron and A. Diez. Propagation of chaos: A review of models, methods and applications. II. applications. Kinetic and Related Models, 15(6):1017-1173, 2022. · Zbl 1496.82017
[58] J.-F. Chassagneux. Linear multistep schemes for BSDEs. SIAM Journal on Numerical Analysis, 52(6):2815-2836, 2014. · Zbl 1326.65017
[59] J.-F. Chassagneux, J. Chen, and N. Frikha. Deep Runge-Kutta schemes for BSDEs. arXiv:2212.14372, 2022.
[60] J.-F. Chassagneux, J. Chen, N. Frikha, and C. Zhou. A learning scheme by sparse grids and Picard approximations for semilinear parabolic PDEs. IMA Journal of Numerical Analysis, 11 2022. drac066.
[61] J.-F. Chassagneux and D. Crisan. Runge-Kutta schemes for backward stochastic differential equations. The Annals of Applied Probability, 24(2):679-720, 2014. · Zbl 1303.60045
[62] J.-F. Chassagneux, D. Crisan, and F. Delarue. Numerical method for FBSDEs of McKean-Vlasov type. The Annals of Applied Probability, 29(3):1640 - 1684, 2019. · Zbl 1466.65012
[63] J.-F. Chassagneux, R. Elie, and I. Kharroubi. Discrete-time approximation of multidimensional BSDEs with oblique reflections. The Annals of Applied Probability, 22(3):971-1007, 2012. · Zbl 1243.93128
[64] J.-F. Chassagneux and A. Richou. Numerical stability analysis of the Euler scheme for BSDEs. SIAM Journal on Numerical Analysis, 53(2):1172-1193, 2015. · Zbl 1311.93088
[65] J.-F. Chassagneux and A. Richou. Numerical simulation of quadratic BSDEs. The Annals of Applied Probability, 26(1):262-304, 2016. · Zbl 1334.60129
[66] J.-F. Chassagneux and C. A. G. Trillos. Cubature method to solve BSDEs: Error expansion and complexity control. Mathematics of Computation, 89:1895-1932, 2020. · Zbl 07188542
[67] J.-F. Chassagneux and M. Yang. Numerical approximation of singular forward-backward SDEs. Journal of Computational Physics, 468:111459, 2022. · Zbl 07578891
[68] K. W. Chau and C. W. Oosterlee. On the wavelet-based SWIFT method for backward stochastic differential equations. IMA Journal of Numerical Analysis, 38(2):1051-1083, 2018. · Zbl 1477.65019
[69] K. W. Chau and C. W. Oosterlee. Stochastic grid bundling method for backward stochastic differential equations. International Journal of Computer Mathematics, 96(11):2272-2301, 2019. · Zbl 1499.91165
[70] P. Cheridito, H. M. Soner, N. Touzi, and N. Victoir. Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Communications on Pure and Applied Mathematics, 60(7):1081-1110, 2007. · Zbl 1121.60062
[71] P. Cheridito and M. Stadje. BSΔEs and BSDEs with non-Lipschitz drivers: Comparison, convergence and robustness. Bernoulli, 19(3):1047-1085, 2013. · Zbl 1306.60069
[72] D. Chevance. Numerical methods for backward stochastic differential equations. In L. C. G. Rogers and D. Talay, editors, Numerical Methods in Finance, pages 232-244. Cambridge University Press, 1997. · Zbl 0898.90031
[73] F. Coquet, V. Mackevičius, and J. Mémin. Stability in D of martingales and backward equations under discretization of filtration. Stochastic Processes and their Applications, 75(2):235-248, 1998. · Zbl 0932.60047
[74] F. Coquet, J. Mémin, and L. Slominski. On weak convergence of filtrations. Séminaire de probabilités de Strasbourg, 35:306-328, 2001. · Zbl 0987.60009
[75] S. Crépey, R. Gerboud, Z. Grbac, and N. Ngor. Counterparty risk and funding: The four wings of the TVA. International Journal of Theoretical and Applied Finance, 16(2):1350006, 2013. · Zbl 1266.91115
[76] S. Crépey and T. M. Nguyen. Nonlinear Monte Carlo schemes for counterparty risk on credit derivatives. In K. Glau, Z. Grbac, M. Scherer, and R. Zagst, editors, Innovations in Derivatives Markets, pages 53-82, Cham, 2016. Springer International Publishing. · Zbl 1398.91668
[77] S. Crépey and S. Song. Counterparty risk and funding: immersion and beyond. Finance and Stochastics, 20(4):901-930, 2016. · Zbl 1380.91139
[78] D. Crisan and F. Delarue. Sharp derivative bounds for solutions of degenerate semi-linear partial differential equations. Journal of Functional Analysis, 263(3024-3101), 2012. · Zbl 1262.35064
[79] D. Crisan and K. Manolarakis. Probabilistic methods for semilinear partial differential equations. Applications to finance. ESAIM: M2AN, 44(5):1107-1133, 2010. · Zbl 1210.65011
[80] D. Crisan and K. Manolarakis. Solving backward stochastic differential equations using the cubature method: application to nonlinear pricing. SIAM Journal on Financial Mathematics, 3(1):534-571, 2012. · Zbl 1259.65005
[81] D. Crisan and K. Manolarakis. Second order discretization of backward SDEs and simulation with the cubature method. Annals of Applied Probability, 24(2):652-678, 2014. · Zbl 1303.60046
[82] D. Crisan, K. Manolarakis, and N. Touzi. On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights. Stochastic Processes and their Applications, 120(7):1133 - 1158, 2010. · Zbl 1193.65005
[83] J. Cvitaniç and I. Karatzas. Hedging contingent claims with constrained profolios. The Annals of Applied Probaility, 3(3):652-681, 1993. · Zbl 0825.93958
[84] J. Cvitaniç and I. Karatzas. Backward stochastic differential equations with reflection and Dynkin games. The Annals of Probability, 24(4):2024-2056, 1996. · Zbl 0876.60031
[85] J. Cvitanić, I. Karatzas, and H. Soner. Backward stochastic differential equations with constraints on the gains-process. The Annals of Probability, 26(4):1522-1551, 1998. · Zbl 0935.60039
[86] J. Cvitanic and J. Zhang. The steepest descent method for forward-backward SDEs. Electronic Journal of Probability, 10:1468 - 1495, 2005. · Zbl 1109.60056
[87] B. Dai, Y. Peng, and B. Gong. Parallel option pricing with BSDE method on GPU. In 2010 Ninth International Conference on Grid and Cloud Computing, pages 191-195, 2010.
[88] P. C. de Raynal and C. G. Trillos. A cubature based algorithm to solve decoupled McKean-Vlasov forward-backward stochastic differential equations. Stochastic Processes and their Applications, 125(6):2206-2255, 2015. · Zbl 1320.65015
[89] F. Delarue and S. Menozzi. A forward-backward stochastic algorithm for quasi-linear PDEs. The Annals of Applied Probability, 16(1):140-184, 2006. · Zbl 1097.65011
[90] F. Delarue and S. Menozzi. An interpolated stochastic algorithm for quasi-linear PDEs. Mathematics of Computation, 77:125-158, 2008. · Zbl 1131.65002
[91] L. Delong. Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications. Springer, London, 2013. · Zbl 1369.60001
[92] J. Douglas, J. Ma, and P. Protter. Numerical methods for forward-backward stochastic differential equations. The Annals of Applied Probability, 6(3):940-968, 1996. · Zbl 0861.65131
[93] P. D. Drummond. Forward, backward, and weighted stochastic bridges. Physical Review E, 96:042123, 2017.
[94] R. Dumitrescu and C. Labart. Numerical approximation of doubly reflected BSDEs with jumps and RCLL obstacles. Journal of Mathematical Analysis and Applications, 442(1):206-243, 2016. · Zbl 1342.60113
[95] R. Dumitrescu and C. Labart. Reflected scheme for doubly reflected BSDEs with jumps and RCLL obstacles. Journal of Computational and Applied Mathematics, 296:827-839, 2016. · Zbl 1329.60234
[96] T. Dunst and A. Prohl. The forward-backward stochastic heat equation: Numerical analysis and simulation. SIAM Journal on Scientific Computing, 38(5):A2725-A2755, 2016. · Zbl 1346.60106
[97] W. E., J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Communications in Mathematics and Statistics, 5(4):349-380, 2017. · Zbl 1382.65016
[98] W. E, J. Han, and A. Jentzen. Algorithms for solving high dimensional PDEs: from nonlinear Monte Carlo to machine learning. Nonlinearity, 35(1):278-310, 2021. · Zbl 1490.60202
[99] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equation. Journal of Scientific Computing, 79(3):1534-1571, 2019. · Zbl 1418.65149
[100] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse. Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. Partial Differential Equations and Applications, 2(6):80, 2021. · Zbl 1476.65273
[101] N. El-Karoui and S. Hamadène. BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations. Stochastic Processes and their Applications, 107(1):145-169, 2003. · Zbl 1075.60534
[102] N. El-Karoui, S. Hamadène, and A. Matoussi. BSDEs and applications. In R. Carmona, editor, Indifference Pricing: Theory and Applications, volume 8, pages 267-320. Princeton University Press, 2008. · Zbl 1168.60030
[103] N. El-Karoui, C. Kapoudjian, E. Paradoux, S. Peng, and M. Quenez. Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. The Annals of Probaility, 25(2):702-737, 1997. · Zbl 0899.60047
[104] N. El-Karoui, E. Pardoux, and M. Quenez. Reflected backward SDEs and American options. In L. C. G. Rogers and D. Talay, editors, Numerical Methods in Finance, pages 215-231. Cambridge University Press, 1997. · Zbl 0898.90033
[105] N. El-Karoui, S. Peng, and M. Quenez. Backward stochastic differential equations in finance. Mathematical Finance, 7(1):1-71, 1997. · Zbl 0884.90035
[106] A. Fahim, N. Touzi, and X. Warin. A probabilistic numerical method for fully nonlinear parabolic PDEs. The Annals of Applied Probability, 21(4):1322 - 1364, 2011. · Zbl 1230.65009
[107] M. Fahrenwaldt. Short-time asymptotic expansions of semilinear evolution equations. Proceedings of the Royal Society of Edinburgh, 146A(141-167), 2016. · Zbl 1342.35061
[108] Q. Feng, M. Luo, and Z. Zhang. Deep signature FBSDE algorithm. Numerical Algebra, Control and Optimization, 2022.
[109] L. Fiorin, G. Pagès, and A. Sagna. Product Markovian quantization of a diffusion process with applications to finance. Methodology and Computing in Applied Probability, 21(4):1087-1118, 2019. · Zbl 1437.60047
[110] J.-P. Fouque and Z. Zhang. Deep learning methods for mean field control problems with delay. Frontiers in Applied Mathematics and Statistics, 6:11, 2020.
[111] E. Fournié, J.-M. Lasry, J. Lebuchoux, and P.-L. Lions. Applications of Malliavin calculus to Monte Carlo methods in finance. II. Finance and Stochastics, 5(2):201-236, 2001. · Zbl 0973.60061
[112] Y. Fu, J. Yang, and W. Zhao. Prediction-correction scheme for decoupled forward backward stochastic differential equations with jumps. East Asian Journal on Applied Mathematics, 6(3):253-277, 2016. · Zbl 1422.65020
[113] Y. Fu and W. Zhao. An explicit second-order numerical scheme to solve decoupled forward backward stochastic equations. East Asian Journal on Applied Mathematics, 4(4):368-385, 2014. · Zbl 1317.65031
[114] Y. Fu, W. Zhao, and T. Zhou. Multistep schemes for forward backward stochastic differential equations with jumps. Journal of Scientific Computing, 69(2):651-672, 2016. · Zbl 1368.60072
[115] Y. Fu, W. Zhao, and T. Zhou. Efficient spectral sparse grid approximations for solving multi-dimensional forward backward SDEs. Discrete & Continuous Dynamical Systems - B, 22(9):3439-3458, 2017. · Zbl 1368.60071
[116] M. Fujii. A polynomial scheme of asymptotic expansion for backward SDEs and option pricing. Quantitative Finance, 16(3):427-445, 2016. · Zbl 1468.91166
[117] M. Fujii, S. Sato, and A. Takahashi. An FBSDE approach to American option pricing with an interacting particle method. Asia-Pacific Financial Markets, 22(3):239-260, 2015. · Zbl 1368.91181
[118] M. Fujii and A. Takahashi. Analytical approximation for non-linear FBSDEs with perturbation scheme. International Journal of Theoretical and Applied Finance, 15(5):1250034, 2012. · Zbl 1262.91159
[119] M. Fujii and A. Takahashi. Perturbative expansion of FBSDE in an incomplete market with stochastic volatility. Quarterly Journal of Finance, 2(3):1250015, 2012.
[120] M. Fujii and A. Takahashi. Perturbative expansion technique for non-linear FBSDEs with interacting particle method. Asia-Pacific Financial Market, 22(3):283-304, 2015. · Zbl 1368.65009
[121] M. Fujii and A. Takahashi. Asymptotic expansion for forward-backward SDEs with jumps. Stochastics, 91(2):175-214, 2019. · Zbl 1500.60031
[122] M. Fujii and A. Takahashi. Solving backward stochastic differential equations with quadratic-growth drivers by connecting the short-term expansions. Stochastic Processes and their Applications, 129(5):1492-1532, 2019. · Zbl 1426.60072
[123] M. Fujii, A. Takahashi, and M. Takahashi. Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs. Asia-Pacific Financial Markets, 26(3):391-408, 2019. · Zbl 1422.91694
[124] N. Ganesan, Y. Yu, and B. Hientzsch. Pricing barrier options with deep backward stochastic differential equation methods. Journal of Computational Finance, 25(4):1-25, March 2022.
[125] S. Gasparyan and Y. Kutoyants. On approximation of the BSDE with unknown volatility in forward equation. Armenian Journal of Mathematics, 7(1):59-79, May 2015. · Zbl 1322.60123
[126] Y. Ge, L. Li, and G. Zhang. A Fourier transform method for solving backward stochastic differential equations. Methodology and Computing in Applied Probability, 24(1):385-412, 2022. · Zbl 1487.65008
[127] C. Geiss, S. Geiss, and E. Gobet. Generalized fractional smoothness and \[{L_p}\]-variation of BSDEs with non-lipschitz terminal condition. Stochastic Processes and their Applications, 122(5):2078-2116, 2012. · Zbl 1255.60096
[128] C. Geiss and C. Labart. Simulation of BSDEs with jumps by Wiener chaos expansion. Stochastic Processes and their Applications, 126(7):2123-2162, 2016. · Zbl 1336.60138
[129] C. Geiss, C. Labart, and A. Luoto. Mean square rate of convergence for random walk approximation of forward-backward SDEs. Advances in Applied Probability, 52(3):735-771, 2020. · Zbl 1473.60089
[130] C. Geiss, C. Labart, and A. Luoto. Random walk approximation of BSDEs with Hölder continuous terminal condition. Bernoulli, 26(1):159-190, 2020. · Zbl 1433.60033
[131] M. Germain, J. Mikael, and X. Warin. Numerical resolution of McKean-Vlasov FBSDEs using neural networks. Methodology and Computing in Applied Probability, 24(4):2557-2586, 2022. · Zbl 1505.65010
[132] M. Germain, H. Pham, and X. Warin. Approximation error analysis of some deep backward schemes for nonlinear PDEs. SIAM Journal on Scientific Computing, 44(1):A28-A56, 2022. · Zbl 1490.65231
[133] M. Germain, H. Pham, and X. Warin. Neural networks-based algorithms for stochastic control and PDEs in finance. In C.-A. Lehalle and A. Capponi, editors, Machine Learning And Data Sciences For Financial Markets: A Guide To Contemporary Practices. Cambridge University Press, 2022.
[134] K. Gnameho, M. Stadje, and A. Pelsser. A regress-later algorithm for backward stochastic differential equations. arXiv:1706.07986, 2017.
[135] A. Gnoatto, M. Patacca, and A. Picarelli. A deep solver for BSDEs with jumps. arXiv:2211.04349, 2022.
[136] A. Gnoatto, A. Picarelli, and C. Reisinger. Deep xVA solver: A neural network-based counterparty credit risk management framework. SIAM Journal on Financial Mathematics, 14(1):314-352, 2023. · Zbl 1516.91065
[137] E. Gobet and C. Labart. Error expansion for the discretization of backward stochastic differential equations. Stochastic Processes and their Applications, 117(7):803-829, 2007. · Zbl 1117.60058
[138] E. Gobet and C. Labart. Solving BSDE with adaptive control variate. SIAM Journal on Numerical Analysis, 48(1):257-277, 2010. · Zbl 1208.60055
[139] E. Gobet and J.-P. Lemor. Numerical simulation of BSDEs using empirical regression methods: theory and practice. Proceedings of the “Fifth Colloquium on BSDEs” (29th May - 1st June 2005, Shanghai) available at arXiv:0806.4447, 2008.
[140] E. Gobet, J.-P. Lemor, and X. Warin. A regression-based Monte Carlo method to solve backward stochastic differential equations. Annals of Applied Probability, 15(3):2172-2202, 2005. · Zbl 1083.60047
[141] E. Gobet, J. López-Salas, and C. Vázquez. Quasi-regression Monte-Carlo scheme for semi-linear PDEs and BSDEs with large scale parallelization on GPUs. Archives of Computational Methods in Engineering, 27(3):889-921, 2020.
[142] E. Gobet, J. G. López-Salas, P. Turkedjiev, and C. Vásquez. Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs. SIAM Journal on Scientific Computing, 38(6):652-677, 2015. · Zbl 1352.65008
[143] E. Gobet and S. Maire. Sequential control variates for functionals of Markov processes. SIAM Journal on Numerical Analysis, 43(3):1256-1275, 2005. · Zbl 1093.65003
[144] E. Gobet and A. Makhlouf. \[{\mathbf{l}_2} \]-time regularity of BSDEs with irregular terminal functions. Stochastic Processes and their Applications, 120(7):1105-1132, 2010. · Zbl 1195.60079
[145] E. Gobet and S. Pagliarani. Analytical approximations of BSDEs with nonsmooth driver. SIAM Journal on Financial Mathematics, 6(1):919-958, 2015. · Zbl 1326.65019
[146] E. Gobet, J. G. L. Salas, and C. Vázquez. Quasi-regression Monte-Carlo method for semi-linear PDEs and BSDEs. Proceedings, 21(1), 2019.
[147] E. Gobet and P. Turkedjiev. Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Mathematics of Computation, 86(299):1359-1391, 2014. · Zbl 1344.60067
[148] E. Gobet and P. Turkedjiev. Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression. Bernoulli, 22(1):530-562, 2016. · Zbl 1339.60094
[149] E. Gobet and P. Turkedjiev. Adaptive importance sampling in least-squares Monte Carlo algorithms for backward stochastic differential equations. Stochastic Processes and their Applications, 127(4):1171-1203, 2017. · Zbl 1361.93067
[150] B. Gong, W. Liu, T. Tang, W. Zhao, and T. Zhou. An efficient gradient projection method for stochastic optimal control problems. SIAM Journal on Numerical Analysis, 55(6):2982-3005, 2017. · Zbl 1386.60239
[151] B. Gong and H. Rui. One order numerical scheme for forward-backward stochastic differential equations. Applied Mathematics and Computation, 271:220 - 231, 2015. · Zbl 1410.65009
[152] B. Gong and W. Zhao. Optimal error estimates for a fully discrete Euler scheme for decoupled forward backward stochastic differential equations. East Asian Journal on Applied Mathematics, 7(3):548-565, 2017. · Zbl 1382.60092
[153] L. Gonon, P. Grohs, A. Jentzen, D. Kofler, and D. Šiška. Uniform error estimates for artificial neural network approximations for heat equations. IMA Journal of Numerical Analysis, 42(3):1991-2054, 08 2021. · Zbl 1502.65171
[154] P. Grohs, F. Hornung, A. Jentzen, and P. von Wurstemberger. A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations. arXiv:1809.02362, 2018. · Zbl 07679303
[155] G. Guo. Finite difference methods for the BSDEs in finance. International Journal of Financial Studies, 6(1):1-15, 2018.
[156] W. Guo, J. Zhang, and J. Zhuo. A monotone scheme for high-dimensional fully nonlinear PDEs. The Annals of Applied Probability, 25(3):1540 - 1580, 2015. · Zbl 1321.65158
[157] S. Hamadène. Reflected BSDE’s with discontinuous barrier and applications. Stochastics and Stochastics Reports, 74(3):571-596, 2002. · Zbl 1015.60057
[158] S. Hamadène and M. Jeanblanc. On the starting and stopping problem: application in reversible investments. Mathematics of Operations Research, 32(1):182-192, 2007. · Zbl 1276.91100
[159] S. Hamadène and J. Lepeltier. Reflected BSDEs and mixed game problem. Stochastic Processes and their Applications, 85(2):177-188, 2000. · Zbl 0999.91005
[160] Y. Hamaguchi and D. Taguchi. Approximations for adapted M-solutions of Type-II backward stochastic Volterra integral equations. ESAIM: PS, 27:19-79, 2023. · Zbl 1517.60078
[161] J. Han, R. Hu, and J. Long. Learning high-dimensional McKean-Vlasov forward-backward stochastic differential equations with general distribution dependence. arXiv:2204.11924, 2022.
[162] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505-8510, 2018. · Zbl 1416.35137
[163] J. Han and J. Long. Convergence of the deep BSDE method for coupled FBSDEs. Probability, Uncertainty and Quantitative Risk, 5(1), Jul 2020. · Zbl 1454.60105
[164] Q. Han. Variable step size Adams methods for BSDEs. Journal of Mathematics, 2021:9799627, 2021.
[165] Q. Han and S. Ji. A multi-step algorithm for BSDEs based on a predictor-corrector scheme and least-squares Monte Carlo. Methodology and Computing in Applied Probability, 24(4):2403-2426, 2022. · Zbl 1505.65002
[166] K. P. Hawkins, A. Pakniyat, and P. Tsiotras. Value function estimators for Feynman-Kac forward-backward SDEs in stochastic optimal control. arXiv:2103.14246, 2021.
[167] P. Henry-Labordère. Cutting CVA’s complexity. Risk, 25(7):67-73, 2012.
[168] P. Henry-Labordère, C. Litterer, and Z. Ren. A dual algorithm for stochastic control problems: Applications to uncertain volatility models and CVA. SIAM Journal on Financial Mathematics, 7(1):159-182, 2016. · Zbl 1338.93401
[169] P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi, and X. Warin. Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 55(1):184 - 210, 2019. · Zbl 1467.60067
[170] P. Henry-Labordère, X. Tan, and N. Touzi. A numerical algorithm for a class of BSDEs via the branching process. Stochastic Processes and their Applications, 124(2):1112-1140, 2014. · Zbl 1301.60084
[171] B. Hientzsch. Introduction to solving quant finance problems with time-stepped FBSDE and deep learning. arXiv:1911.12231, 2019.
[172] U. Horst, Y. Hu, P. Imkeller, A. Réveillac, and J. Zhang. Forward-backward systems for expected utility maximization. Stochastic Processes and their Applications, 124(5):1813-1848, 2014. · Zbl 1329.60182
[173] M. Hu and L. Jiang. Explicit \(θ\)-schemes for solving anticipated backward stochastic differential equations. arXiv:1906.01793, 2019.
[174] M. Hu and L. Jiang. Numerical schemes for backward stochastic differential equations driven by \(G\)-Brownian motion. arXiv:1911.13070, 2019.
[175] M. Hu and L. Jiang. An efficient numerical method for forward-backward stochastic differential equations driven by G-Brownian motion. Applied Numerical Mathematics, 165:578-597, 2021. · Zbl 1484.65012
[176] Y. Hu, P. Imkeller, and M. Müller. Utility maximization in incomplete markets. The Annals of Applied Probaility, 15(3):1691-1712, 2005. · Zbl 1083.60048
[177] Y. Hu, D. Nualart, and X. Song. Malliavin calculus for backward stochastic differential equations and application to numerical solutions. The Annals of Applied Probability, 21(6):2379 - 2423, 2011. · Zbl 1246.60081
[178] Y. Hu and S. Tang. Multi-dimensional BSDE with oblique reflection and optimal switching. Probability Theory and Related Fields, 147(1):89-121, 2010. · Zbl 1188.60029
[179] T. Huijskens. A Numerical Method for Backward Stochastic Differential Equations with Applications in Finance. PhD thesis, Technische Universiteit Delft, 2013.
[180] T. Huijskens, M. Ruijter, and C. Oosterlee. Efficient numerical Fourier methods for coupled forward-backward SDEs. Journal of Computational and Applied Mathematics, 296:593 - 612, 2016. · Zbl 1336.65010
[181] C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear PDEs. Mathematics of Computation, 89:1547-1579, 2020. · Zbl 1440.60063
[182] M. Hutzenthaler, A. Jentzen, and T. Kruse. Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities. Foundations of Computational Mathematics, 22(4):905-966, 2022. · Zbl 1501.65084
[183] M. Hutzenthaler, A. Jentzen, T. Kruse, T. Anh Nguyen, and P. von Wurstemberger. Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476(2244):20190630, 2020. · Zbl 1472.65157
[184] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen. A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. SN Partial Differential Equations and Applications, 1(2):10, 2020. · Zbl 1455.65200
[185] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen. Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations. Journal of Numerical Mathematics, 31(1):1-28, 2023. · Zbl 1515.65025
[186] M. Hutzenthaler, A. Jentzen, B. Kuckuck, and J. L. Padgett. Strong \[{L^p}\]-error analysis of nonlinear Monte Carlo approximations for high-dimensional semilinear partial differential equations. arXiv:2110.08297, 2021.
[187] M. Hutzenthaler and T. Kruse. Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities. SIAM Journal on Numerical Analysis, 58(2):929-961, 2020.
[188] M. Hutzenthaler, T. Kruse, and T. A. Nguyen. On the speed of convergence of Picard iterations of backward stochastic differential equations. Probability, Uncertainty and Quantitative Risk, 7(2):133-150, 2022. · Zbl 1493.60091
[189] M. Hutzenthaler and T. A. Nguyen. Multilevel Picard approximations for high-dimensional decoupled forward-backward stochastic differential equations. arXiv:2204.08511, 2022.
[190] C. B. Hyndman and P. O. Ngou. A convolution method for numerical solution of backward stochastic differential equations. Methodology and Computing in Applied Probability, 19(1):1-29, 2017. · Zbl 1360.60109
[191] P. Imkeller and G. Dos Reis. Path regularity and explicit convergence rate for BSDE with truncated quadratic growth. Stochastic Processes and their Applications, 120(3):348-379, 2010. · Zbl 1196.60101
[192] P. Imkeller, G. Dos Reis, and J. Zhang. Results on numerics for FBSDE with drivers of quadratic growth. In C. Chiarella and A. Novikov, editors, Contemporary Quantitative Finance: Essays in Honour of Eckhard Platen, pages 159-182. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. · Zbl 1236.60068
[193] P. Imkeller, A. Réveillac, and J. Zhang. Solvability and numerical simulation of BSDEs related to BSPDEs with applications to utility maximization. International Journal of Theoretical and Applied Finance, 14(05):635-667, 2011. · Zbl 1283.91194
[194] K. Jańczak-Borkowska. Discrete approximations of generalized RBSDE with random terminal time. Discussiones Mathematicae. Probability and Statistics, 32, 01 2012. · Zbl 1311.60062
[195] A. Jentzen, D. Salimova, and T. Welti. A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients. Communications in Mathematical Sciences, 19(5):1167-1205, 2021. · Zbl 1475.65157
[196] S. Ji, S. Peng, Y. Peng, and X. Zhang. Three algorithms for solving high-dimensional fully coupled FBSDEs through deep learning. IEEE Intelligent Systems, 35(3):71-84, 2020.
[197] S. Ji, S. Peng, Y. Peng, and X. Zhang. A deep learning method for solving stochastic optimal control problems driven by fully-coupled FBSDEs. arXiv:2204.05796, 2022.
[198] Y. Jiang and J. Li. Convergence of the Deep BSDE method for FBSDEs with non-Lipschitz coefficients. Probability, Uncertainty and Quantitative Risk, 6(4):391-408, 2021. · Zbl 1491.60084
[199] L. Kapllani and L. Teng. Deep learning algorithms for solving high dimensional nonlinear backward stochastic differential equations. arXiv:2010.01319, 2021.
[200] L. Kapllani and L. Teng. Multistep schemes for solving backward stochastic differential equations on GPU. Journal of Mathematics in Industry, 12(1):5, 2022. · Zbl 1485.91251
[201] L. Kapllani, L. Teng, and M. Ehrhardt. A multistep scheme to solve backward stochastic differential equations for option pricing on GPUs. In I. Dimov and S. Fidanova, editors, Advances in High Performance Computing, pages 196-208, Cham, 2021. Springer International Publishing. · Zbl 1461.91353
[202] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed machine learning. Nature Reviews Physics, 3(422-440), 2021.
[203] I. Kharroubi and T. Lim. A decomposition approach for the discrete-time approximation of FBSDEs with a jump. Random Operators and Stochastic Equations, 23(2):81-109, 2015. · Zbl 1318.65005
[204] I. Kharroubi, T. Lim, and X. Warin. Discretization and machine learning approximation of BSDEs with a constraint on the Gains-process. Monte Carlo Methods and Applications, 27(1):27-55, 2021. · Zbl 1469.65031
[205] A. Khedher and M. Vanmaele. Discretisation of FBSDEs driven by càdlàg martingales. Journal of Mathematical Analysis and Applications, 435(1):508-531, 2016. · Zbl 1333.60155
[206] M. Kobylanski. Backward stochastic differential equations and partial differential equations with quadratic growth. The Annals of Probability, 28(2):558 - 602, 2000. · Zbl 1044.60045
[207] T. Kong, W. Zhao, and T. Zhou. Probabilistic high order numerical schemes for fully nonlinear parabolic PDEs. Communications in Computational Physics, 18(5):1482-1503, 2015. · Zbl 1388.65016
[208] Y. A. Kutoyants. On approximation of BSDE and multi-step MLE-processes. Probability, Uncertainty and Quantitative Risk, 1(1):4, 2016. · Zbl 1435.62314
[209] Y. A. Kutoyants and L. Zhou. On approximation of the backward stochastic differential equation. Journal of Statistical Planning and Inference, 150:111-123, 2014. · Zbl 1287.62017
[210] C. Labart and J. Lelong. A parallel algorithm for solving BSDEs. Monte Carlo Methods and Applications, 19(1):11-39, 2013. · Zbl 1263.65005
[211] M. Laurière. Numerical methods for mean field games and mean field type control. In Mean Field Games, pages 221-282. American Mathematical Society, 01 2021. · Zbl 1457.91057
[212] A. Lejay, E. Mordecki, and S. Torres. Numerical approximation of backward stochastic differential equations with jumps. Research Report RR-8595, INRIA, Sept. 2014.
[213] J.-P. Lemor, E. Gobet, and X. Warin. Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli, 12(5):889-916, 2006. · Zbl 1136.60351
[214] J. P. Lepeltier, S. Hamadène, and A. Matoussi. Double barrier backward SDEs with continuous coefficients. In Pitman Research Notes in Mathematics Series 364, pages 115-128. Cambridge University Press, 1997. · Zbl 0887.60065
[215] A. Lesniewski and A. Richter. Managing counterparty credit risk via BSDEs. arXiv:1608.03237, 2016.
[216] Y. Li. A high-order numerical method for BSPDEs with applications to mathematical finance. SIAM Journal on Financial Mathematics, 13(1):147-178, 2022. · Zbl 1484.65016
[217] Y. Li, J. Yang, and W. Zhao. Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs. Science China Mathematics, 60(5):923-948, 2017. · Zbl 1372.65018
[218] Y. Li and W. Zhao. \[{L^p}\]-error estimates for numerical schemes for solving certain kinds of backward stochastic differential equations. Statistics & Probability Letters, 80(21):1612-1617, 2010. · Zbl 1208.60068
[219] A. Lionnet, G. dos Reis, and L. Szpruch. Time discretization of FBSDE with polynomial growth drivers and reaction-diffusion PDEs. The Annals of Applied Probability, 25(5):2563-2625, 2015. · Zbl 1342.65011
[220] A. Lionnet, G. dos Reis, and L. Szpruch. Convergence and qualitative properties of modified explicit schemes for BSDEs with polynomial growth. The Annals of Applied Probability, 28(4):2544-2591, 2018. · Zbl 06974758
[221] Y. Liu, Y. Sun, and W. Zhao. A fully discrete explicit multistep scheme for solving coupled forward backward stochastic differential equations. Advances in Applied Mathematics and Mechanics, 12:643-663, 2020. · Zbl 1488.65012
[222] Y. Liu, Y. Sun, and W. Zhao. Explicit multistep stochastic characteristic approximation methods for forward backward stochastic differential equations. Discrete and Continuous Dynamical Systems - S, 15(4):773-795, 2022. · Zbl 1484.65014
[223] F. Longstaff and R. Schwartz. Valuing American options by simulation: A simple least-square approach. Review of Financial Studies, 14(1):113-147, 2001.
[224] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving differential equations. SIAM Review, 63(1):208-228, 2021. · Zbl 1459.65002
[225] J. Ma, P. Protter, J. Martín, and S. Torres. Numerical method for backward stochastic differential equations. The Annals of Applied Probaility, 12(1):302-316, 2002. · Zbl 1017.60074
[226] J. Ma, P. Protter, and J. Yong. Solving forward-backward stochastic differential equations explicitly – a four step scheme. Probability Theory and Related Fields, 98(3):339-359, 1994. · Zbl 0794.60056
[227] J. Ma, J. Shen, and Y. Zhao. On numerical approximations of forward-backward stochastic differential equations. SIAM Journal on Numerical Analysis, 46(5):2636-2661, 2008. · Zbl 1177.60064
[228] J. Ma and J. Zhang. Representation theorems for backward stochastic differential equations. The Annals of Applied Probability, 12(4):1390-1418, 2002. · Zbl 1017.60067
[229] J. Ma and J. Zhang. Representations and regularities for solutions to BSDEs with reflections. Stochastic Processes and their Applications, 115(4):539-569, 2005. · Zbl 1076.60049
[230] D. Madan, M. Pistorius, and M. Stadje. Convergence of BSΔEs driven by random walks to BSDEs: the case of (in)finite activity jumps with general driver. Stochastic Processes and their Applications, 126(5):1553-1584, 2016. · Zbl 1335.60132
[231] M. Martínez, J. S. Martín, and S. Torres. Numerical method for reflected backward stochastic differential equations. Stochastic Analysis and Applications, 29(6):1008-1032, 2011. · Zbl 1243.60050
[232] T. Massing. Approximation and error analysis of forward-backward SDEs driven by general Lévy processes using shot noise series representations. arXiv:2108.04777, 2021.
[233] H. P. McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Communications on Pure and Applied Mathematics, 28(3):323-331, 1975. · Zbl 0316.35053
[234] T. A. McWalter, R. Rudd, J. Kienitz, and E. Platen. Recursive marginal quantization of higher-order schemes. Quantitative Finance, 18(4):693-706, 2018. · Zbl 1400.91604
[235] J. Mémin, S. Peng, and M. Xu. Convergence of solutions of discrete reflected backward SDE’s and simulations. Acta Mathematicae Applicatae Sinica, English Series, 24(1):1-18, 2008. · Zbl 1138.60049
[236] G. Milstein and M. Tretyakov. Numerical algorithms for forward-backward stochastic differential equations. SIAM Journal on Scientific Computing, 28(2):561-582, 2006. · Zbl 1114.60054
[237] G. N. Milstein and M. V. Tretyakov. Stochastic Numerics for Mathematical Physics. Springer, Berlin, Heidelberg, 2004. · Zbl 1085.60004
[238] G. N. Milstein and M. V. Tretyakov. Discretization of forward-backward stochastic differential equations and related quasi-linear parabolic equations. IMA Journal of Numerical Analysis, 27(1):24-44, 01 2007. · Zbl 1109.65009
[239] T. Moseler. A Picard-type Iteration for Backward Stochastic Differential Equations: Convergence and Importance Sampling. PhD thesis, Univserity of Konstanz, 2010.
[240] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686-707, 2019. · Zbl 1415.68175
[241] R. Naito and T. Yamada. A second-order discretization for forward-backward SDEs using local approximations with Malliavin calculus. Monte Carlo Methods and Applications, 25(4):341-361, 2019. · Zbl 1444.60047
[242] R. Naito and T. Yamada. An acceleration scheme for deep learning-based BSDE solver using weak expansions. International Journal of Financial Engineering, 07(02):2050012, 2020.
[243] T. Nakayama. Approximation of BSDE’s by stochastic difference equation’s. Journal of Mathematical Sciences, The University of Tokyo, 9:257-277, 2002. · Zbl 1010.60055
[244] B. Negyesi, K. Andersson, and C. W. Oosterlee. The One Step Malliavin scheme: new discretization of BSDEs implemented with deep learning regressions. arXiv:2110.05421, 2021.
[245] J. Y. Nguwi, G. Penent, and N. Privault. A deep branching solver for fully nonlinear partial differential equations. arXiv:2203.03234, 2022. · Zbl 1510.35020
[246] G. Penent and N. Privault. A fully nonlinear Feynman-Kac formula with derivatives of arbitrary orders. Journal of Evolution Equations, 23(1):22, 2023. · Zbl 1510.35020
[247] S. Ninomiya and Y. Shinozaki. Higher-order discretization methods of forward-backward SDEs using KLNV-scheme and their applications to XVA pricing. Applied Mathematical Finance, 26(3):257-292, 2019. · Zbl 1426.91273
[248] R. E. Nmeir and G. Pagès. Quantization-based approximation of reflected BSDEs with extended upper bounds for recursive quantization. arXiv:2105.07684, 2021.
[249] N. Nüsken and L. Richter. Interpolating between BSDEs and PINNs – deep learning for elliptic and parabolic boundary value problems. arXiv:2112.03749, 2021.
[250] N. Nüsken and L. Richter. Solving high-dimensional Hamilton-Jacobi-Bellman PDEs using neural networks: perspectives from the theory of controlled diffusions and measures on path space. Partial Differential Equations and Applications, 2(4):48, 2021. · Zbl 1480.35101
[251] P. Oyono Ngou and C. Hyndman. A Fourier interpolation method for numerical solution of FBSDEs: Global convergence, stability, and higher order discretizations. Journal of Risk and Financial Management, 15(9):388, 2022.
[252] G. Pagès and A. Sagna. Improved error bounds for quantization based numerical schemes for BSDE and nonlinear filtering. Stochastic Processes and their Applications, 128(3):847-883, 2018. · Zbl 1390.60152
[253] C.-K. Pak, M.-C. Kim, and C.-H. Rim. An efficient third-order scheme for BSDEs based on nonequidistant difference scheme. Numerical Algorithms, 85(2):467-483, 2020. · Zbl 1462.65012
[254] A. Papapantoleon, D. Possamaï, and A. Saplaouras. Stability of backward stochastic differential equations: the general case. arXiv:2107.11048, 2021. · Zbl 1447.60059
[255] E. Paradoux and S. Peng. Adapted solution of a backward stochastic differential equation. Systems and Control Letters, 14:55-61, 1990. · Zbl 0692.93064
[256] E. Pardoux and A. Răşcanu. Stochastic Differential Equations, Backward SDEs, Partial Differential Equations. Springer International Publishing, Cham, 2014. · Zbl 1321.60005
[257] A. Pelsser and K. Gnameho. A Monte Carlo method for backward stochastic differential equations with Hermite martingales. Monte Carlo Methods and Applications, 25(1):37-60, 2019. · Zbl 07061108
[258] G. Penent and N. Privault. Existence of solutions for nonlinear elliptic PDEs with fractional Laplacians on open balls. arXiv:2110.09941, 2021. · Zbl 1495.35104
[259] G. Penent and N. Privault. Existence and probabilistic representation of the solutions of semilinear parabolic PDEs with fractional Laplacians. Stochastics and Partial Differential Equations: Analysis and Computations, 10(2):446-474, 2022. · Zbl 1495.35104
[260] S. Peng. A general stochastic maximum principle for optimal control problems. SIAM Journal of Control and Optimization, 28(4):966-979, 1990. · Zbl 0712.93067
[261] S. Peng. Backward stochastic differential equations and applications to optimal control. Applied Mathematics and Optimization, 27(2):125-144, 1993. · Zbl 0769.60054
[262] S. Peng. Backward stochastic differential equation, nonlinear expectation and their applications. Proceedings of the International Congress of Mathematicians, 1:393-432, 2011. · Zbl 1233.60031
[263] S. Peng and M. Xu. Numerical algorithms for backward stochastic differential equations with 1-d Brownian motion: Convergence and simulations. ESAIM: Mathematical Modelling and Numerical Analysis, 45(2):335-360, 2011. · Zbl 1269.65008
[264] Y. Peng, B. Gong, H. Liu, and B. Dai. Option pricing on the GPU with backward stochastic differential equation. In 2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming, pages 19-23, 2011.
[265] Y. Peng, B. Gong, H. Lui, and Y. Zhang. Parallel computing for option pricing based on the backward stochastic differential equation. In W. Zhang, Z. Chen, C. C. Douglas, and W. Tong, editors, High Performance Computing and Applications, volume 5938, pages 325-330. Springer, Berlin, Heidelberg, 2010.
[266] M. A. Pereira, A. D. Saravanos, O. So, and E. A. Theodorou. Decentralized safe multi-agent stochastic optimal control using deep FBSDEs and ADMM. In Robotics: Science and Systems (RSS), 2022.
[267] V. Piterbarg. Funding beyond discounting: collateral agreements and derivatives pricing. Risk, 23(2):97, 2010.
[268] A. Prohl and Y. Wang. Strong rates of convergence for a space-time discretization of the backward stochastic heat equation, and of a linear-quadratic control problem for the stochastic heat equation. ESAIM: COCV, 27:54, 2021. · Zbl 1467.60050
[269] M. Raissi. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations. arXiv:1804.07010, 2018.
[270] C. Reisinger, W. Stockinger, and Y. Zhang. A posteriori error estimates for fully coupled McKean-Vlasov forward-backward SDEs. arXiv:2007.07731, 2020.
[271] C. Reisinger and Y. Zhang. Rectified deep neural networks overcome the curse of dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems. Analysis and Applications, 18(06):951-999, 2020. · Zbl 1456.82804
[272] A. Richou. Numerical simulation of BSDEs with drivers of quadratic growth. The Annals of Applied Probability, 21(5):1933-1964, 2011. · Zbl 1274.60221
[273] R. Rouge and N. El-Karoui. Pricing via utility maximization and entropy. Mathematical Finance, 10(2):259-276, 2000. · Zbl 1052.91512
[274] M. Ruijter and C. Oosterlee. Numerical Fourier method and second-order Taylor scheme for backward SDEs in finance. Applied Numerical Mathematics, 103:1-26, 2016. · Zbl 1386.91166
[275] M. J. Ruijter and C. W. Oosterlee. A Fourier cosine method for an efficient computation of solutions to BSDEs. SIAM Journal on Scientific Computing, 37(2):A859-A889, 2015. · Zbl 1314.65011
[276] J. Sekine. An approximation for exponential hedging. Advanced Studies in Pure Mathematics, Stochastic Analysis and Related Topics in Kyoto: In honour of Kiyosi Itô, 41:279-299, 2004. · Zbl 1059.60077
[277] A. Sghir and S. Hadiri. A new numerical method for 1-D backward stochastic differential equations without using conditional expectations. Random Operators and Stochastic Equations, 28(2):79-91, 2020. · Zbl 1461.60042
[278] E. Shamarova, R. Chertovskih, A. F. Ramos, and P. Aguiar. Backward-stochastic-differential-equation approach to modeling of gene expression. Physical Review E, 95:032418, 2017.
[279] J. Sirignano and K. Spiliopoulos. DGM: A deep learning algorithm for solving partial differential equations. Journal of Computational Physics, 375(15):1339-1364, 2018. · Zbl 1416.65394
[280] A. Skorokhod. Branching diffusion processes. Theory of Probability and Its Applications, 9(3):445-449, 1964. · Zbl 0264.60058
[281] D. Sun, G. Liang, and S. Tang. Quantitative stability and numerical analysis of Markovian quadratic BSDEs with reflection. Probability, Uncertainty and Quantitative Risk, 7(1):13-30, 2022. · Zbl 1487.65012
[282] Y. Sun and W. Zhao. An explicit second-order numerical scheme for mean-field forward backward stochastic differential equations. Numerical Algorithms, 84(1):253-283, 2020. · Zbl 1456.65008
[283] Y. Sun, W. Zhao, and T. Zhou. Explicit \(θ\)-schemes for mean-field backward stochastic differential equations. SIAM Journal on Numerical Analysis, 56(4):2672-2697, 2018. · Zbl 1430.60058
[284] A. Takahashi, Y. Tsuchida, and T. Yamada. A new efficient approximation scheme for solving high-dimensional semilinear PDEs: Control variate method for Deep BSDE solver. Journal of Computational Physics, 454:110956, 2022. · Zbl 07518053
[285] A. Takahashi and T. Yamada. An asymptotic expansion of forward-backward SDEs with a perturbed driver. International Journal of Financial Engineering, 2(2):1550020, 2015.
[286] A. Takahashi and T. Yamada. An asymptotic expansion for forward-backward SDEs: A Malliavin calculus approach. Asia-Pacific Financial Markets, 23(4):337-373, 2016. · Zbl 1418.91542
[287] A. Takahashi and T. Yamda. Asymptotic expansion and deep neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with nonlinear coefficients, 2022. preprint available at https://www.carf.e.u-tokyo.ac.jp/research/f547/.
[288] T. Tang, W. Zhao, and T. Zhou. Deferred correction methods for forward backward stochastic differential equations. Numerical Mathematics: Theory, Methods and Applications, 10(2):222-242, 2017. · Zbl 1389.60083
[289] X. Tang and J. Xiong. Stability analysis of general multistep methods for Markovian backward stochastic differential equations. IMA Journal of Numerical Analysis, 42(2):1789-1805, 05 2022. · Zbl 1498.65025
[290] B. Teng, Y. Shi, and Q. Zhu. Solving high-dimensional forward-backward doubly SDEs and their related SPDEs through deep learning. Personal and Ubiquitous Computing, 26(4):925-932, 2022.
[291] L. Teng. A review of tree-based approaches to solve forward-backward stochastic differential equations. Journal of Computational Finance, 25(3), Decemeber 2021.
[292] L. Teng. Gradient boosting-based numerical methods for high-dimensional backward stochastic differential equations. Applied Mathematics and Computation, 426:127119, 2022. · Zbl 1510.65274
[293] L. Teng, A. Lapitckii, and M. Günther. A multi-step scheme based on cubic spline for solving backward stochastic differential equations. Applied Numerical Mathematics, 150:117 - 138, 2020. · Zbl 1433.60041
[294] L. Teng and W. Zhao. High-order combined multi-step scheme for solving forward backward stochastic differential equations. Journal of Scientific Computing, 87(3):81, 2021. · Zbl 07353297
[295] S. Toldo. Stability of solutions of BSDEs with random terminal time. ESAIM: Probability and Statistics, 10:141-163, 2006. · Zbl 1185.60064
[296] M.-B. Tran. A parallel four step domain decomposition scheme for coupled forward-backward stochastic differential equations. Journal de Mathematiques Pures et Appliquees, 96(4):337-394, 2011. · Zbl 1254.60074
[297] Y. Tsuchida. Control variate method for deep BSDE solver using weak approximation. Asia-Pacific Financial Markets, 2022.
[298] P. Turkedjiev. Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions. Electronic Journal of Probability, 20:49pp., 2015. · Zbl 1322.60139
[299] H. Wang, H. Chen, A. Sudjianto, R. Liu, and Q. Shen. Deep learning-based BSDE solver for Libor market model with application to Bermudan swaption pricing and hedging. arXiv:1807.06622, 2018.
[300] J. Wang and R. Korn. Numerical algorithms for reflected anticipated backward stochastic differential equations with two obstacles and default risk. Risks, 8(3), 2020.
[301] J.-l. Wang, C.-x. Luo, and W.-D. Zhao. Crank-Nicolson scheme and its error estimates for backward stochastic differential equations. Acta Mathematicae Applicatae Sinica, English Series, 2009.
[302] X. Wang, W. Zhao, and T. Zhou. Sinc-\(θ\) schemes for backward stochastic differential equations. SIAM Journal on Numerical Analysis, 60(4):1799-1823, 2022. · Zbl 1506.65024
[303] Y. Wang. A numerical scheme for BSVIEs. arXiv:1605.04865, 2016.
[304] Y. Wang and Y.-H. Ni. Deep BSDE-ML learning and its application to model-free optimal control. arXiv:2201.01318, 2022.
[305] X. Warin. Nesting Monte Carlo for high-dimensional non-linear PDEs. Monte Carlo Methods and Applications, 24(4):225-247, 2018. · Zbl 07008421
[306] S. Watanabe. On the branching process for Brownian particles with an absorbing boundary. Journal of Mathematics of Kyoto University, 4(2):385-398, 1965. · Zbl 0134.34401
[307] P. Whittle. Risk-Sensitive Optimal Control. Wiley-Interscience Series in Systems and Optimization (Book 2). Wiley, 1st edition, 1990. · Zbl 0718.93068
[308] M. Xu. Numerical algorithms and simulations for reflected backward stochastic differential equations with two continuous barriers. Journal of Computational and Applied Mathematics, 236(6):1137-1154, 2011. · Zbl 1243.65013
[309] J. Yang and W. Zhao. Convergence of recent multistep schemes for a forward-backward stochastic differential equation. East Asian Journal on Applied Mathematics, 5(4):387-404, 2015. · Zbl 1422.65023
[310] J. Yang, W. Zhao, and T. Zhou. Explicit deferred correction methods for second-order forward backward stochastic differential equations. Journal of Scientific Computing, 79(3):1409-1432, 2019. · Zbl 1420.60094
[311] J. Yang, W. Zhao, and T. Zhou. A unified probabilistic discretization scheme for FBSDEs: Stability, consistency, and convergence analysis. SIAM Journal on Numerical Analysis, 58(4):2351-2375, 2020. · Zbl 1454.60106
[312] B. Yu, X. Xing, and A. Sudjianto. Deep-learning based numerical BSDE method for barrier options. arXiv:1904.05921, 2019.
[313] Y. Yu, N. Ganesan, and B. Hientzsch. Backward deep BSDE methods and applications to nonlinear problems. Risks, 11(3), 2023.
[314] S. Yuan and R. Kawai. Numerical aspects of shot noise representation of infinitely divisible laws and related processes. Probability Surveys, 18:201-271, 2021. · Zbl 1469.60063
[315] G. Zhang, M. Gunzburger, and W. Zhao. A sparse-grid method for multi-dimensional backward stochastic differential equations. Journal of Computational Mathematics, 31(3):221-248, 2013. · Zbl 1289.65011
[316] J. Zhang. Some fine properties of backward stochastic differential equations. PhD thesis, Purdue university, 2001.
[317] J. Zhang. A numerical scheme for BSDEs. The Annals of Applied Probability, 14(1):459-488, 2004. · Zbl 1056.60067
[318] J. Zhang. Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory. Springer, New York, NY, 2017. · Zbl 1390.60004
[319] W. Zhang and L. Jiang. Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion. Statistics & Probability Letters, 171:109024, 2021. · Zbl 1457.60094
[320] W. Zhang and H. Min. Weak convergence analysis and improved error estimates for decoupled forward-backward stochastic differential equations. Mathematics, 9(8):848, 2021.
[321] W. Zhang and H. Min. \[{L^p}\]-error estimates for numerical schemes for solving certain kinds of mean-field backward stochastic differential equations. Journal of Theoretical Probability, 2022.
[322] Y. Zhang and W. Zheng. Discretizing a backward stochastic differential equation. International Journal of Mathematics and Mathematical Sciences, 32:357319, 2002. · Zbl 1006.60050
[323] W. Zhao, L. Chen, and S. Peng. A new kind of accurate numerical method for backward stochastic differential equations. SIAM Journal on Scientific Computing, 28(4):1563-1581, 2006. · Zbl 1121.60072
[324] W. Zhao, Y. Fu, and T. Zhou. New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations. SIAM Journal on Scientific Computing, 36(4):A1731-A1751, 2014. · Zbl 1316.65014
[325] W. Zhao, Y. Li, and Y. Fu. Second-order schemes for solving decoupled forward backward stochastic differential equations. Science China Mathematics, 57(4):665-686, 2014. · Zbl 1314.65012
[326] W. Zhao, Y. Li, and L. Ju. Error estimates of the Crank-Nicolson scheme for solving backward stochastic differential equations. International Journal of Numerical Analysis and Modeling, 10(4):876-898, 2013. · Zbl 1281.65016
[327] W. Zhao, Y. Li, and G. Zhang. A generalized \(θ\)-scheme for solving backward stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 17(5):1585-1603, 2012. · Zbl 1250.60033
[328] W. Zhao, J. Wang, and S. Peng. Error estimates of the \(θ\)-scheme for backward stochastic differential equations. Discrete and Continuous Dynamical Systems - Series B, 12(4):905-924, 2008. · Zbl 1185.60077
[329] W. Zhao, G. Zhang, and L. Ju. A stable multistep scheme for solving backward stochastic differential equations. SIAM Journal on Numerical Analysis, 48(4):1369-1394, 2010. · Zbl 1234.60068
[330] W. Zhao, W. Zhang, and L. Ju. A numerical method and its error estimates for the decoupled forward-backward stochastic differential equations. Communications in Computational Physics, 15(3):618-646, 2014. · Zbl 06799394
[331] W. Zhao, W. Zhang, and L. Ju. A multistep scheme for decoupled forward-backward stochastic differential equations. Numerical Mathematics: Theory, Methods and Applications, 9(2):262-288, 2016. · Zbl 1374.65008
[332] W. Zhao, T. Zhou, and T. Kong. High order numerical schemes for second-order FBSDEs with applications to stochastic optimal control. Communications in Computational Physics, 21(3):808-834, 2017. · Zbl 1499.65027
[333] X. Zhong and S. Liao. On the homotopy analysis method for backward/forward-backward stochastic differential equations. Numerical Algorithms, 76(2):487-519, 2017. · Zbl 1377.65009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.