×

Representation theorems for backward stochastic differential equations. (English) Zbl 1017.60067

Let \(W\) be a \(d\)-dimensional Brownian motion. The authors investigate the backward stochastic differential equation (BSDE) \[ dY_t= f(t, X_t, Y_t, Z_t)dt+ Z_t dW_t,\quad t\in [0,T],\;Y_t= \xi, \] driven by a forward equation \[ dX_t= b(t, X_t)dt+ \sigma(X_t) dW_t,\quad t\in [0,T],\;X_T= x, \] with strictly elliptic diffusion coefficient: \(\sigma\sigma^*\geq \varepsilon I\). BSDE’s of this type with terminal condition of the form \(\xi= g(X_T)\) have been studied extensively in the past decade, we refer, e.g., to E. Pardoux and S. Peng [in: Stochastic partial differential equations and their applications. Lect. Notes Control Inf. Sci. 176, 200-217 (1992; Zbl 0766.60079)] and the survey book edited by N. El Karoui and L. Mazliak [“Backward stochastic differential equations” (Harlow, 1997)]. The goal of the authors is twice: Assuming that the terminal condition depends on the path of \(X\) at a finite number of time points, \(\xi= g(X_{t_1},\dots, X_{t_n})\), they establish an explicit representation formula for the solution \((Y,Z)\) of the BSDE. These formulas for \(Y\) and \(Z\) can be thought as a new type of Feynman-Kac formula; the significance of that for \(Z\) lies in the fact that it does not depend on the derivatives of the coefficients of the BSDE. This allows to get it with only Lipschitz assumptions on the coefficients, and enables the authors to prove the pathwise regularity of the process \(Z\). The main device in the authors’ approach is an integration by parts formula for the Skorokhod integral.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
34F05 Ordinary differential equations and systems with randomness
91B24 Microeconomic theory (price theory and economic markets)
Full Text: DOI

References:

[1] BERMIN, H.-P. (1998). Hedging options: the Malliavin calculus approach versus the -hedging approach. · Zbl 1049.91061 · doi:10.1111/1467-9965.t01-1-00006
[2] BISMUT, J. M. (1973). Théorie Probabiliste du Contrôle des Diffusions. Amer. Math. Soc., Providence, RI.
[3] DELLACHERIE, C. and MEy ER, P. (1978). Probabilities and Potential. North-Holland, Amsterdam.
[4] EL KAROUI, N. and MAZLIAK, L. (1997). Backward Stochastic Differential Equations. Longman Sci. Tech., Harlow. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[5] EL KAROUI, N., PENG, S. and QUENEZ, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-72. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[6] FOURNIÉ, E., LASRY, J.-M., LEBUCHOUX, J., LIONS, P.-L. and TOUZI, N. (1997). An application of Malliavin calculus to Monte Carlo methods in finance. · Zbl 0947.60066 · doi:10.1007/s007800050068
[7] GIKHMAN, I. I. and SKOROHOD, A. V. (1972). Stochastic Differential Equations. Springer, Berlin. · Zbl 0242.60003
[8] HAMADENE, S. (1996). Équations différentielles stochastiques rétrogrades: le cas localment Lipschitzien. Ann. Inst. H. Poincaré 32 645-659. · Zbl 0893.60031
[9] HU, Y. (1999). On the existence of solutions to one-dimensional forward-backward SDEs.
[10] HU, Y. (1999). On the solutions of forward-backward SDEs with monotone and continuous coefficients. · Zbl 0929.60053 · doi:10.1023/A:1008678927573
[11] HU, Y. and YONG, J. (1999). Forward-backward stochastic differential equations with nonsmooth coefficients. · Zbl 1045.60058 · doi:10.1016/S0304-4149(99)00106-4
[12] KARATZAS, I. and SHREVE, S. E. (1987). Brownian Motion and Stochastic Calculus. Springer, Berlin. · Zbl 0638.60065
[13] LEPELTIER, M. and SAN MARTIN, J. (1997). Backward stochastic differential equations with nonLipschitz coefficients. Statist. Probab. Lett. 32 425-430. · Zbl 0904.60042
[14] MA, J., PROTTER, P. and YONG, J. (1994). Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Related Fields 98 339-359. · Zbl 0794.60056 · doi:10.1007/BF01192258
[15] MA, J. and YONG, J. (1999). Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702. Springer, Berlin. · Zbl 0927.60004 · doi:10.1007/978-3-540-48831-6
[16] NUALART, D. (1995). The Malliavin Calculus and Related Topics. Springer, Berlin. · Zbl 0837.60050
[17] PARDOUX, E. and PENG, S. (1990). Adapted solutions of backward stochastic equations. Sy stems Control Lett. 14 55-61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[18] PARDOUX, E. and PENG S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. Lecture Notes in Control and Inform. Sci. 176 200-217. Springer, New York. · Zbl 0766.60079 · doi:10.1007/BFb0007334
[19] PARDOUX, E. and PENG, S. (1995). Some backward stochastic differential equations with non-Lipschitz coefficients.
[20] PROTTER, P. (1990). Integration and Stochastic Differential Equations. Springer, Berlin. · Zbl 0694.60047
[21] REVUZ, D. and YOR, M. (1991). Brownian Motion and Continuous Martingales. Springer, Berlin. · Zbl 0731.60002
[22] YONG, J. and ZHOU, X. (1999). Stochastic Controls: Hamiltonian Sy stems and HJB Equations. Springer, Berlin.
[23] WEST LAFAy ETTE, INDIANA 47907-1395 E-MAIL: majin@math.purdue.edu SCHOOL OF MATHEMATICS UNIVERSITY OF MINNESOTA MINNEAPOLIS, MINNESOTA 55455 E-MAIL: jfzhang@math.umn.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.