×

Time discretization of FBSDE with polynomial growth drivers and reaction-diffusion PDEs. (English) Zbl 1342.65011

This is a nice paper with some deep mathematical time discretization analysis. The authors consider the error analysis of numerical methods for systems of forwards, backwards stochastic differential equations with polynomial growth drivers. They first extend the canonical Zhang path regularity theorem to the polynomial case. The authors then examine the stability of the class of \(\theta\) methods and show that \(\theta\geq 1/2\) is essential for stability in the polynomial case and also prove a higher convergence rate for the case \(\theta=1/2\).
Finally, a tamed version of the explicit Euler method is constructed under which it is stable and convergent. A general result for the global error in a non-Lipschitz framework is derived and some simple numerical tests conclude the paper.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Alanko, S. and Avellaneda, M. (2013). Reducing variance in the numerical solution of BSDEs. C. R. Math. Acad. Sci. Paris 351 135-138. · Zbl 1269.65004 · doi:10.1016/j.crma.2013.02.010
[2] Bouchard, B. and Touzi, N. (2004). Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stochastic Process. Appl. 111 175-206. · Zbl 1071.60059 · doi:10.1016/j.spa.2004.01.001
[3] Briand, P. and Carmona, R. (2000). BSDEs with polynomial growth generators. J. Appl. Math. Stoch. Anal. 13 207-238. · Zbl 0979.60046 · doi:10.1155/S1048953300000216
[4] Briand, P. and Confortola, F. (2008). Differentiability of backward stochastic differential equations in Hilbert spaces with monotone generators. Appl. Math. Optim. 57 149-176. · Zbl 1147.60318 · doi:10.1007/s00245-007-9014-9
[5] Briand, Ph., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L. (2003). \(L^{p}\) solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 109-129. · Zbl 1075.65503 · doi:10.1016/S0304-4149(03)00089-9
[6] Chassagneux, J. F. (2012). An introduction to the numerical approximation of BSDEs. Lecture notes, 2nd Summer School of the Euro-Mediterranean Research Center for Mathematics and its Applications (EMRCMA). Available at .
[7] Chassagneux, J. F. (2013). Linear multi-step schemes for BSDEs. Preprint. Available at . arXiv:1306.5548v1
[8] Chassagneux, J. F. and Crisan, D. (2014). Runge-Kutta schemes for backward stochastic differential equations. Ann. Appl. Probab. 24 679-720. · Zbl 1303.60045 · doi:10.1214/13-AAP933
[9] Chassagneux, J.-F. and Richou, A. (2013). Numerical simulation of quadratic BSDEs. Preprint. Available at . arXiv:1307.5741 · Zbl 1334.60129 · doi:10.1214/14-AAP1090
[10] Crisan, D. and Manolarakis, K. (2010). Second order discretization of backward SDEs and simulation with the cubature method. Ann. Appl. Probab. 24 652-678. · Zbl 1303.60046 · doi:10.1214/13-AAP932
[11] Crisan, D. and Manolarakis, K. (2012). Solving backward stochastic differential equations using the cubature method: Application to nonlinear pricing. SIAM J. Financial Math. 3 534-571. · Zbl 1259.65005 · doi:10.1137/090765766
[12] dos Reis, G., Réveillac, A. and Zhang, J. (2011). FBSDEs with time delayed generators: \(L^{p}\)-solutions, differentiability, representation formulas and path regularity. Stochastic Process. Appl. 121 2114-2150. · Zbl 1255.60090 · doi:10.1016/j.spa.2011.05.002
[13] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-71. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[14] Estep, D. J., Larson, M. G. and Williams, R. D. (2000). Estimating the error of numerical solutions of systems of reaction-diffusion equations. Mem. Amer. Math. Soc. 146 viii+109. · Zbl 0998.65096 · doi:10.1090/memo/0696
[15] Gobet, E., Lemor, J.-P. and Warin, X. (2005). A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15 2172-2202. · Zbl 1083.60047 · doi:10.1214/105051605000000412
[16] Gobet, E. and Turkedjiev, P. (2011). Approximation of discrete BSDE using least-squares regression. Technical Report hal-00642685. · Zbl 1339.60094
[17] Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840 . Springer, Berlin. · Zbl 0456.35001
[18] Hutzenthaler, M., Jentzen, A. and Kloeden, P. E. (2011). Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 1563-1576. · Zbl 1228.65014 · doi:10.1098/rspa.2010.0348
[19] Hutzenthaler, M., Jentzen, A. and Kloeden, P. E. (2012). Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22 1611-1641. · Zbl 1256.65003 · doi:10.1214/11-AAP803
[20] Imkeller, P. (2008). Malliavin’s Calculus and Applications in Stochastic Control and Finance. IMPAN Lecture Notes 1 . Polish Academy of Sciences, Institute of Mathematics, Warsaw. · Zbl 1192.60079
[21] Imkeller, P. and dos Reis, G. (2010a). Path regularity and explicit convergence rate for BSDE with truncated quadratic growth. Stochastic Process. Appl. 120 348-379. · Zbl 1196.60101 · doi:10.1016/j.spa.2009.11.004
[22] Imkeller, P. and dos Reis, G. (2010b). Corrigendum to “Path regularity and explicit convergence rate for BSDE with truncated quadratic growth” [Stochastic Process. Appl. 120 (2010) 348-379] [MR2584898]. Stochastic Process. Appl. 120 2286-2288. · Zbl 1196.60101 · doi:10.1016/j.spa.2009.11.004
[23] Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations. Applications of Mathematics ( New York ) 23 . Springer, Berlin. · Zbl 0752.60043
[24] Kovács, B. (2011). Semilinear parabolic problems. Master’s thesis, Eötvös Loránd Univ., Budapest.
[25] Lionnet, A. (2014). Topics on backward stochastic differential equations. Theoretical and practical aspects. Ph.D. thesis, Oxford Univ. · JFM 11.0125.01
[26] Ma, J. and Zhang, J. (2002). Path regularity for solutions of backward stochastic differential equations. Probab. Theory Related Fields 122 163-190. · Zbl 1014.60060 · doi:10.1007/s004400100144
[27] Mao, X. and Szpruch, L. (2013). Strong convergence rates for backward Euler-Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stochastics 85 144-171. · Zbl 1304.65009 · doi:10.1080/17442508.2011.651213
[28] Matoussi, A. and Xu, M. (2008). Sobolev solution for semilinear PDE with obstacle under monotonicity condition. Electron. J. Probab. 13 1035-1067. · Zbl 1191.35133 · doi:10.1214/EJP.v13-522
[29] Milstein, G. N. and Tretyakov, M. V. (2004). Stochastic Numerics for Mathematical Physics. Scientific Computation . Springer, Berlin. · Zbl 1085.60004
[30] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003 · doi:10.1007/3-540-28329-3
[31] Pardoux, É. (1999). BSDEs, weak convergence and homogenization of semilinear PDEs. In Nonlinear Analysis , Differential Equations and Control ( Montreal , QC , 1998). NATO Sci. Ser. C Math. Phys. Sci. 528 503-549. Kluwer Academic, Dordrecht. · Zbl 0959.60049 · doi:10.1007/978-94-011-4560-2_9
[32] Rothe, F. (1984). Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Math. 1072 . Springer, Berlin. · Zbl 0546.35003
[33] Süli, E. and Mayers, D. F. (2003). An Introduction to Numerical Analysis . Cambridge Univ. Press, Cambridge. · Zbl 1033.65001 · doi:10.1017/CBO9780511801181
[34] Touzi, N. (2013). Optimal Stochastic Control , Stochastic Target Problems , and Backward SDE. Fields Institute Monographs 29 . Springer, New York. · Zbl 1256.93008 · doi:10.1007/978-1-4614-4286-8
[35] Zeidler, E. (1990). Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators . Springer, New York. Translated from the German by the author and Leo F. Boron. · Zbl 0684.47029
[36] Zhang, G., Gunzburger, M. and Zhao, W. (2013). A sparse-grid method for multi-dimensional backward stochastic differential equations. J. Comput. Math. 31 221-248. · Zbl 1289.65011 · doi:10.4208/jcm.1212-m4014
[37] Zhang, Q. and Zhao, H. (2012). Probabilistic representation of weak solutions of partial differential equations with polynomial growth coefficients. J. Theoret. Probab. 25 396-423. · Zbl 1255.60103 · doi:10.1007/s10959-011-0350-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.