×

Existence and probabilistic representation of the solutions of semilinear parabolic PDEs with fractional Laplacians. (English) Zbl 1495.35104

Summary: We obtain existence results for the solution \(u\) of nonlocal semilinear parabolic PDEs on \(\mathbb{R}^d\) with polynomial nonlinearities in \((u, \nabla u)\), using a tree-based probabilistic representation. This probabilistic representation applies to the solution of the equation itself, as well as to its partial derivatives by associating one of \(d\) marks to the initial tree branch. Partial derivatives are dealt with by integration by parts and subordination of Brownian motion. Numerical illustrations are provided in examples for the fractional Laplacian in dimension up to 10, and for the fractional Burgers equation in dimension two.

MSC:

35K58 Semilinear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
35R11 Fractional partial differential equations
47G30 Pseudodifferential operators
35S05 Pseudodifferential operators as generalizations of partial differential operators
35S10 Initial value problems for PDEs with pseudodifferential operators
60J85 Applications of branching processes
65R20 Numerical methods for integral equations
60G51 Processes with independent increments; Lévy processes
60G52 Stable stochastic processes
65C05 Monte Carlo methods
45D05 Volterra integral equations
33C05 Classical hypergeometric functions, \({}_2F_1\)
60H07 Stochastic calculus of variations and the Malliavin calculus

References:

[1] Acosta, G.; Borthagaray, JP, A fractional Laplace equation: regularity of solutions and finite element approximations, SIAM J. Numer. Anal., 55, 2, 472-495 (2021) · Zbl 1359.65246 · doi:10.1137/15M1033952
[2] Acosta, G.; Borthagaray, JP; Bruno, O.; Maas, M., Regularity theory and high order numerical methods for the (1D)-fractional Laplacian, Math. Comput., 87, 312, 1821-1857 (2018) · Zbl 1409.65111 · doi:10.1090/mcom/3276
[3] Applebaum, D., Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1200.60001 · doi:10.1017/CBO9780511809781
[4] Belak, C., Hoffmann, D., Seifried, F.T.: Branching diffusions with jumps and valuation with systemic counterparties. Preprint SSRN (2020)
[5] Biler, P.; Imbert, C.; Karch, G., The nonlocal porous medium equation: Barenblatt profiles and other weak solutions, Arch. Ration. Mech. Anal., 215, 2, 497-529 (2015) · Zbl 1308.35197 · doi:10.1007/s00205-014-0786-1
[6] Birkner, M., López-Mimbela, J.A., Wakolbinger, A.: Blow-up of semilinear PDE’s at the critical dimension. A probabilistic approach. Proc. Am. Math. Soc. 130(8), 2431-2442 (2002) (electronic) · Zbl 0993.60068
[7] Blömker, D.; Romito, M.; Tribe, R., A probabilistic representation for the solutions to some non-linear PDEs using pruned branching trees, Ann. Inst. H. Poincaré Probab. Statist., 43, 2, 175-192 (2007) · Zbl 1119.60060 · doi:10.1016/j.anihpb.2006.02.001
[8] Bonito, A.; Borthagaray, JP; Nochetto, RH; Otárola, E.; Salgado, AJ, Numerical methods for fractional diffusion, Comput. Vis. Sci., 19, 5-6, 19-46 (2018) · Zbl 07704543 · doi:10.1007/s00791-018-0289-y
[9] Chakraborty, S.; López-Mimbela, JA, Nonexplosion of a class of semilinear equations via branching particle representations, Adv. Appl. Probab., 40, 250-272 (2008) · Zbl 1144.60049 · doi:10.1239/aap/1208358895
[10] Fournié, E.; Lasry, JM; Lebuchoux, J.; Lions, P-L; Touzi, N., Applications of Malliavin calculus to Monte Carlo methods in finance, Finance Stochast., 3, 4, 391-412 (1999) · Zbl 0947.60066 · doi:10.1007/s007800050068
[11] Fujita, H., On the blowing up of solutions of the Cauchy problem for \(u_t=\Delta u+u^{1+\alpha }\), J. Fac. Sci. Univ. Tokyo Sect. I, 13, 109-124 (1966) · Zbl 0163.34002
[12] Getoor, RK, First passage times for symmetric stable processes in space, Trans. Am. Math. Soc., 101, 75-90 (1961) · Zbl 0104.11203 · doi:10.1090/S0002-9947-1961-0137148-5
[13] Henry-Labordère, P., Touzi, N.: Branching diffusion representation for nonlinear Cauchy problems and Monte Carlo approximation. Preprint arXiv:1801.08794 (2018) · Zbl 1476.35090
[14] Henry-Labordère, P.; Oudjane, N.; Tan, X.; Touzi, N.; Warin, X., Branching diffusion representation of semilinear PDEs and Monte Carlo approximation, Ann. Inst. H. Poincaré Probab. Stat., 55, 1, 184-210 (2019) · Zbl 1467.60067 · doi:10.1214/17-AIHP880
[15] Huang, Y., Oberman, A.: Finite difference methods for fractional Laplacians. Preprint arXiv:1611.00164 (2016)
[16] Ikeda, N., Nagasawa, M., Watanabe, S.: Branching Markov processes I, II, III. J. Math. Kyoto Univ. 8-9:233-278, 365-410, 95-160 (1968-1969) · Zbl 0233.60070
[17] Ishige, K.; Kawakami, T.; Kobayashi, K., Global solutions for a nonlinear integral equation with a generalized heat kernel, Discrete Cont. Dyn. Syst. Ser. S, 7, 4, 767-783 (2014) · Zbl 1288.45004
[18] Ishige, K., Kawakami, T., Okabe, K.: Existence of solutions to nonlinear parabolic equations via majorant integral kernel. arXiv:2101.06581 (2021)
[19] Kawai, R.; Takeuchi, A., Greeks formulas for an asset price model with gamma processes, Math. Finance, 21, 4, 723-742 (2011) · Zbl 1244.91092
[20] Kawai, R.; Takeuchi, A., Computation of Greeks for asset price dynamics driven by stable and tempered stable processes, Quant. Finance, 13, 8, 1303-1316 (2013) · Zbl 1281.91186 · doi:10.1080/14697688.2011.589403
[21] Kwaśnicki, M., Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20, 1, 7-51 (2017) · Zbl 1375.47038 · doi:10.1515/fca-2017-0002
[22] Kyprianou, AE; Rivero, V., Special, conjugate and complete scale functions for spectrally negative Lévy processes, Electron. J. Probab., 13, 57, 1672-1701 (2008) · Zbl 1193.60064
[23] Le Jan, Y.; Sznitman, AS, Stochastic cascades and 3-dimensional Navier-Stokes equations, Probab. Theory Relat. Fields, 109, 3, 343-366 (1997) · Zbl 0888.60072 · doi:10.1007/s004400050135
[24] López-Mimbela, J.A.: A probabilistic approach to existence of global solutions of a system of nonlinear differential equations. In: Fourth Symposium on Probability Theory and Stochastic Processes (Spanish) (Guanajuato, 1996), volume 12 of Aportaciones Mat. Notas Investigación, pp. 147-155. Soc. Mat. Mexicana, México (1996) · Zbl 0924.60049
[25] McKean, HP, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, Commun. Pure Appl. Math., 28, 3, 323-331 (1975) · Zbl 0316.35053 · doi:10.1002/cpa.3160280302
[26] Miller, R. K., Nonlinear Volterra Integral Equations. Mathematics Lecture Note Series (1971), Menlo Park: W. A. Benjamin, Inc., Menlo Park · Zbl 0448.45004
[27] Nagasawa, M.; Sirao, T., Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Am. Math. Soc., 139, 301-310 (1969) · Zbl 0175.40702 · doi:10.1090/S0002-9947-1969-0239379-X
[28] Sato, K., Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.60001
[29] Skorokhod, AV, Branching diffusion processes, Teor. Verojatnost. i. Primenen., 9, 492-497 (1964) · Zbl 0264.60058
[30] Sugitani, S., On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math., 12, 45-51 (1975) · Zbl 0303.45010
[31] Weron, R., On the Chambers-Mallows-Stuck method for simulating skewed stable random variables, Stat. Probab. Lett., 28, 2, 165-171 (1996) · Zbl 0856.60022 · doi:10.1016/0167-7152(95)00113-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.