×

A numerical scheme for BSDEs. (English) Zbl 1056.60067

The author considers the decoupled system of forward-backward stochastic differential equations \[ \begin{aligned} X_t&=x + \int_0^t b(s,X_s) \,ds + \int_0^t \sigma(s,X_s)\,dW_s,\\ Y_t&= \Phi(X)+\int_t^Tf(s,X_s,Y_s,Z_s)\,ds-\int_t^TZ_s\,dW_s, \end{aligned} \tag{1} \] where \(b,\,\sigma\) and \(f\) are deterministic functions and \(W\) is a standard Brownian motion. The deterministic functional \(\Phi\) is assumed to be a so-called \(L^\infty\)-Lipschitz or a \(L^1\)-Lipschitz functional or takes the form \(g(X_T)\). Based on results of J. Ma and J. Zhang [Probab. Theory Relat. Fields 122, No. 2, 163–190 (2002; Zbl 1014.60060)] he proves \(L^2\)-regularity of the martingale integrand \(Z\). A numerical scheme is proposed, consisting of the Euler method for the forward diffusion \(X\) and an approximation via step processes for the pair \((Y,Z)\). Convergence in the mean-square sense of the method is proved and convergence rates are obtained. The latter depend in particular on the above stated smoothness properties of \(\Phi\).

MSC:

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C30 Numerical solutions to stochastic differential and integral equations
60H20 Stochastic integral equations
34F05 Ordinary differential equations and systems with randomness

Citations:

Zbl 1014.60060
Full Text: DOI

References:

[1] Asmussen, S., Glynn, P. and Pitman, J. (1995). Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Probab. 5 875–896. JSTOR: · Zbl 0853.65147 · doi:10.1214/aoap/1177004597
[2] Bally, V. (1995). An approximation scheme for BSDEs and applications to control and nonlinear PDEs. Prepublication 95-15 du Laboratoire de Statistique et Processus de l’Universite du Maine.
[3] Bismut, J. M. (1973). Théorie probabiliste du contrôle des diffusions. Mem. Amer. Math. Soc. 176 .
[4] Björk, T. (1998). Arbitrage Theory in Continuous Time. Oxford Univ. Press. · Zbl 1140.91038
[5] Briand, P., Delyon, B. and Mémin, J. (2001). Donsker-type theorem for BSDEs. Electron. Comm. Probab. 6 1–14. · Zbl 0977.60067
[6] Chevance, D. (1996). Ph.D. thesis, Univ. Provence.
[7] Dai, M. and Jiang, L. (2000). On path-dependent options. In Mathematical Finance—Theory and Applications (J. Yong and R. Cont, eds.) 290–316. Higher Education Press, China.
[8] Douglas, J., Jr., Ma, J. and Protter, P. (1996). Numerical methods for forward–backward stochastic differential equations. Ann. Appl. Probab. 6 940–968. · Zbl 0861.65131 · doi:10.1214/aoap/1034968235
[9] El Karoui, N. and Mazliak, L. (1997). Backward Stochastic Differential Equations . Longman, Harlow. · Zbl 0866.00052
[10] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1–72. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[11] Gikhman, I. I. and Skorohod, A. V. (1972). Stochastic Differential Equations . Springer, New York. · Zbl 0242.60003
[12] Karatzas, I. and Shreve, S. E. (1987). Brownian Motion and Stochastic Calculus . Springer, New York. · Zbl 0638.60065
[13] Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations . Springer, New York. · Zbl 0752.60043
[14] Ma, J., Protter, P., San Martín, J. and Torres, S. (2002). Numerical method for backward SDEs. Ann. Appl. Probab. 12 302–316. · Zbl 1017.60074 · doi:10.1214/aoap/1015961165
[15] Ma, J., Protter, P. and Yong, J. (1994). Solving forward–backward stochastic differential equations explicitly—a four step scheme. Probab. Theory Related Fields 98 339–359. · Zbl 0794.60056 · doi:10.1007/BF01192258
[16] Ma, J. and Yong, J. (1999). Forward–Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702 . Springer, Berlin. · Zbl 0927.60004 · doi:10.1007/978-3-540-48831-6
[17] Ma, J. and Zhang, J. (2002). A representation theorem for backward SDE’s with non-smooth coefficients. Ann. Appl. Probab. 12 1390–1418. · Zbl 1017.60067 · doi:10.1214/aoap/1037125868
[18] Ma, J. and Zhang, J. (2002). Path regularity for solutions of backward SDE’s. Probab. Theory Related Fields 122 163–190. · Zbl 1014.60060 · doi:10.1007/s004400100144
[19] Nualart, D. (1995). The Malliavin Calculus and Related Topics . Springer, New York. · Zbl 0837.60050
[20] Pardoux, E. and Peng, S. (1990). Adapted solutions of backward stochastic equations. System and Control Lett. 14 55–61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[21] Pardoux, E. and Peng, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. Lecture Notes in Control and Inform. Sci. 176 200–217. Springer, Berlin. · Zbl 0766.60079 · doi:10.1007/BFb0007334
[22] Zhang, J. (2001). Some fine properties of backward stochastic differential equations. Ph.D. dissertation, Purdue Univ.
[23] Zhang, Y. and Zheng, W. (2001). Discretizing a backward stochastic differential equations. · Zbl 1006.60050 · doi:10.1155/S0161171202110234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.