×

Multistep schemes for forward backward stochastic differential equations with jumps. (English) Zbl 1368.60072

Summary: In this work, we are concerned with multistep schemes for solving forward backward stochastic differential equations with jumps. The proposed multistep schemes admit many advantages. First of all, motivated by the local property of jump diffusion processes, the Euler method is used to solve the associated forward stochastic differential equation with jump, which reduce dramatically the entire computational complexity, however, the quantities of interests in the backward stochastic differential equations (with jump) are still of high order rate of convergence. Secondly, in each time step, only one jump is involved in the computational procedure, which again reduces dramatically the computational complexity. Finally, the method applies easily to partial-integral differential equations (and some nonlocal PDE models), by using the generalized Feynman-Kac formula. Several numerical experiments are presented to demonstrate the effectiveness of the proposed multistep schemes.

MSC:

60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
65C20 Probabilistic models, generic numerical methods in probability and statistics
Full Text: DOI

References:

[1] Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60, 57-83 (1997) · Zbl 0878.60036 · doi:10.1080/17442509708834099
[2] Becherer, D.: Bounded solution to BSDE’s with jumps for utility optimization and indifference hedging. Ann. Appl. Probab. 16, 2027-2054 (2006) · Zbl 1132.91457 · doi:10.1214/105051606000000475
[3] Bender, C., Zhang, J.: Time discretization and markovian iteration for coupled FBSDEs. Ann. Appl. Probab. 18, 143-177 (2008) · Zbl 1142.65005 · doi:10.1214/07-AAP448
[4] Bouchard, B., Elie, R.: Discrete time approximation of decoupled forward-backward SDE with jumps. Stoch. Process. Appl. 118, 53-75 (2008) · Zbl 1136.60048 · doi:10.1016/j.spa.2007.03.010
[5] Cont, R., Tankov, R.: Financial modelling with jumpe processes. Chapman and Hall/CRC Press, London (2004) · Zbl 1052.91043
[6] Delong, L.: Backward stochastic differential equations with jumps and their actuarial and financial applications. BSDEs with jumps. Springer, New York (2013) · Zbl 1369.60001 · doi:10.1007/978-1-4471-5331-3
[7] Du, Q., Gunzburger, M., Lebourq, R., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 4, 667-696 (2012) · Zbl 1422.76168 · doi:10.1137/110833294
[8] Fu, Y., Yang, J., Zhao, W.: Prediction-correction scheme for decoupled forward backward stochastic differential equations with jumps. submitted (2015) · Zbl 1422.65020
[9] Fu, Y., Zhao, W.: An explicit second-order numerical scheme to solve decoupled forward backward stochastic equations. East Asian J. Appl. Math. 4, 368-385 (2014) · Zbl 1317.65031
[10] Kong, T., Zhao, W., Zhou, T.: High order numerical schemes for second order FBSDEs with applications to stochastic optimal control. arXiv:1502.03206 (2015) · Zbl 1499.65027
[11] Lemor, J.P., Gobet, E., Warin, X.: A regression-based monte carlo method for backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172-2202 (2005) · Zbl 1083.60047
[12] Li, J., Peng, S.: Stochastic optimization theory of backward stochastic differential equations with jumps and viscosity solutions of hamilton-jacobi-bellman equations. Nonlinear Anal. Theory Methods Appl. 70, 1776-1796 (2009) · Zbl 1158.60354 · doi:10.1016/j.na.2008.02.080
[13] Milstein, G.N., Tretyakov, M.V.: Numerical algorithms for forward-backward stochastic differential equations. SIAM J. Sci. Comput. 28, 561-582 (2006) · Zbl 1114.60054 · doi:10.1137/040614426
[14] Morlais, M.: A new existence result for quadratic BSDEs with jumps with application to the utility maximization problem. Stoch. Process. Appl. 120, 1966-1996 (2010) · Zbl 1232.91631 · doi:10.1016/j.spa.2010.05.011
[15] Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 56-61 (1990) · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[16] Ruijter, M., Oosterlee, C.W.: A fourier cosine method for an efficient computation of solutions to BSDEs. SIAM J. Sci. Comput. 37(2), A859-A889 (2015) · Zbl 1314.65011 · doi:10.1137/130913183
[17] Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Sci. Comput. 32, 1447-1475 (1994) · Zbl 0922.49021
[18] Tang, T., Zhao, W., Zhou, T.: Highly accurate numerical schemes for forward backward stochastic differential equations based on deferred correction approach. submitted (2015) · Zbl 1136.60048
[19] Yang, J., Zhao, W.: Convergence of recent multistep schemes for a forward-backward stochastic differential equation. East Asian J. Appl. Math. 5(4), 387-404 (2015) · Zbl 1422.65023 · doi:10.4208/eajam.280515.211015a
[20] Zhang, G., Zhao, W., Webster, C., Gunzburger, M.: Numerical solution of backward stochastic differential equations with jumps for a class of nonlocal diffusion problems. arXiv preprint arXiv:1503.00213 (2015) · Zbl 1142.65005
[21] Zhao, W., Chen, L., Peng, S.: A new kind of accurate numerical method for backward stochastic differential equations. SIAM J. Sci. Comput. 28, 1563-1581 (2006) · Zbl 1121.60072 · doi:10.1137/05063341X
[22] Zhao, W., Fu, Y., Zhou, T.: New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations. SIAM J. Sci. Comput. 36, A1731-A1751 (2014) · Zbl 1316.65014 · doi:10.1137/130941274
[23] Zhao, W., Zhang, G., Ju, L.: A stable multistep scheme for solving backward stochastic differential equations. SIAM J. Numer. Anal. 48, 1369-1394 (2010) · Zbl 1234.60068 · doi:10.1137/09076979X
[24] Zhao, W., Zhang, W., Zhang, G.: Numerical schemes for forward-backward stochastic differential equaiton to nonlinear partial integro-differential equations. submitted (2015) · Zbl 1422.65023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.