×

The forward self-similar solution of fractional incompressible Navier-Stokes system: the critical case. (English) Zbl 07890708

Summary: In this paper, we study the regularity and pointwise estimates of forward self-similar solutions of fractional Navier-Stokes system under the critical case. By employing a Caffarelli, Kohn and Nirenberg-type iteration, \(L^{\infty}\) estimates of the self-similar solution’s profile are established, which is a key ingredient to ensure that the global weighted energy estimate procedure used in [B. Lai et al., Trans. Am. Math. Soc. 374, No. 10, 7449–7497 (2021; Zbl 1479.35622)] is performed under the critical case. As a product, its natural pointwise bounds are recovered. Moreover, to obtain the optimal spatial decay estimate of self-similar solution’s profile, a new technique is required due to lack of the related regularity theory.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35C06 Self-similar solutions to PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

Citations:

Zbl 1479.35622
Full Text: DOI

References:

[1] Barraza, O. A., Self-similar solutions in weak \(L^p\)-spaces of the Navier-Stokes equations, Rev. Mat. Iberoam., 12, 411-439, 1996 · Zbl 0860.35092
[2] Boutros, D.; Gibbon, J., Phase transitions in the fractional three-dimensional Navier-Stokes equations · Zbl 1540.35283
[3] Bradshaw, Z.; Phelps, P., Spatial decay of discretely self-similar solutions to the Navier-Stokes equations, Pure Appl. Anal., 5, 377-407, 2023 · Zbl 1518.35526
[4] Bradshaw, Z.; Tsai, T. P., Forward discretely self-similar solutions of the Navier-Stokes equations II, Ann. Henri Poincaré, 18, 1095-1119, 2017 · Zbl 1368.35204
[5] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math., XXXV, 771-831, 1982 · Zbl 0509.35067
[6] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245-1260, 2007 · Zbl 1143.26002
[7] Cannone, M.; Meyer, Y.; Planchon, Y., Solutions auto-similaires des equations de Navier-Stokes, (Seminaire X-EDP, 1994, Centre de Mathematiques, Ecole Polytechnique) · Zbl 0882.35090
[8] Cannone, M.; Planchon, Y., Self-similar solutions for the Navier-Stokes equations in \(\mathbb{R}^3\), Commun. Partial Differ. Equ., 21, 179-193, 1996 · Zbl 0842.35075
[9] Cao, X.; Chen, Q.; Lai, B., Properties of the linear non-local Stokes operator and its application, Nonlinearity, 32, 2633-2666, 2019 · Zbl 1426.35176
[10] Chae, D.; Wolf, J., On the Liouville type theorems for self-similar solutions to the Navier-Stokes equations, Arch. Ration. Mech. Anal., 225, 549-572, 2017 · Zbl 1367.35104
[11] Chae, D.; Wolf, J., Existence of discretely self-similar solutions to the Navier-Stokes equations for initial value in \(L_{\operatorname{loc}}^2( \mathbb{R}^3)\), Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 1019-1039, 2018 · Zbl 1391.76057
[12] Chen, Z.; Song, R., Estimates on Green functions and Poisson kernels for symmetric stable processes, Math. Ann., 312, 465-501, 1998 · Zbl 0918.60068
[13] Colombo, M.; De Lellis, C.; De Rosa, L., Ill-posedness of Leray solutions for the hypo-dissipative Navier-Stokes equations, Commun. Math. Phys., 362, 659-688, 2018 · Zbl 1402.35204
[14] Colombo, M.; De Lellis, C.; Massaccesi, A., The generalized Caffarelli-Kohn-Nirenberg theorem for the hyperdissipative Navier-Stokes system, Commun. Pure Appl. Math., 73, 609-663, 2020 · Zbl 1442.35298
[15] De Rosa, L., Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations, Commun. Partial Differ. Equ., 44, 335-365, 2019 · Zbl 1416.35183
[16] Dong, H.; Li, D., Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Commun. Math. Sci., 7, 1, 67-80, 2009 · Zbl 1173.35626
[17] Giga, Y.; Miyakawa, T., Navier-Stokes flow in \(\mathbb{R}^3\) with measures as initial vorticity and Morrey spaces, Commun. Partial Differ. Equ., 14, 577-618, 1989 · Zbl 0681.35072
[18] Giusti, E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, 1984, Birkhäuser Verlag: Birkhäuser Verlag Basel, xii+240 pp. · Zbl 0545.49018
[19] Jakubowski, T., The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab. Math. Stat., 22, 419-441, 2002 · Zbl 1035.60046
[20] Jia, H.; Šverák, V., Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent. Math., 196, 233-265, 2014 · Zbl 1301.35089
[21] Kato, T., Strong solutions of the Navier-Stokes equation in Morrey spaces, Bol. Soc. Bras. Mat. (N. S.), 22, 127-155, 1992 · Zbl 0781.35052
[22] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 891-907, 1988 · Zbl 0671.35066
[23] Katz, N.; Pavlovic, N., A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12, 355-379, 2002 · Zbl 0999.35069
[24] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 1, 22-35, 2001 · Zbl 0972.35084
[25] Korobkov, M.; Tsai, T. P., Forward self-similar solutions of the Navier-Stokes equations in the half space, Anal. PDE, 9, 1811-1827, 2016 · Zbl 1358.35094
[26] Lai, B.; Lin, J.; Wang, C., Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping, SIAM J. Math. Anal., 49, 501-529, 2017 · Zbl 1358.76012
[27] Lai, B.; Miao, C.; Zheng, X., The forward self-similar solutions of the fractional Navier-Stokes equations, Adv. Math., 352, 981-1043, 2019 · Zbl 1420.35192
[28] Lai, B.; Miao, M.; Zheng, X., Global Regularity of weak solutions to the generalized Leray equations and its applications, Transl. Am. Math. Soc., 374, 7449-7497, 2021 · Zbl 1479.35622
[29] Lai, B.; Li, J.; Zheng, X., Local \(L^2\) theory of the fractional Navier-Stokes equations and the self-similar solution, Sci. China Math., 66, 503-570, 2023 · Zbl 1509.35185
[30] Leray, J., Essai sur le mouvement d’ un fluid visqueux emplissant l’ espace, Acta Math., 63, 193-248, 1934 · JFM 60.0726.05
[31] Lions, J., Quelques résultats d’existence dans des réquations aux drérivrées partielles non linréaires, Bull. Soc. Math. Fr., 87, 245-273, 1959 · Zbl 0147.07902
[32] Lions, J., Quelques méthodes de résolution des problèmes aux limites non linéaires, 1969, Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603
[33] Nečas, J.; Råužička, M.; Šverák, V., On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math., 176, 283-294, 1996 · Zbl 0884.35115
[34] Scheffer, V., Hausdorff measure and the Navier-Stokes equations, Commun. Math. Phys., 55, 97-112, 1977 · Zbl 0357.35071
[35] Tang, L.; Yu, Y., Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations, Commun. Math. Phys., 334, 1455-1482, 2015 · Zbl 1309.35059
[36] Tao, T., Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal. PDE, 2, 361-366, 2009 · Zbl 1190.35177
[37] Tsai, T., Forward discrete self-similar solutions of the Navier-Stokes equations, Commun. Math. Phys., 328, 29-44, 2014 · Zbl 1293.35218
[38] Tsai, T., On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Ration. Mech. Anal., 143, 29-51, 1998 · Zbl 0916.35084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.