×

Forward self-similar solutions of the fractional Navier-Stokes equations. (English) Zbl 1420.35192

Summary: We study forward self-similar solutions to the 3-D Navier-Stokes equations with the fractional diffusion \((- {\Delta})^\alpha\). First, we construct a global-time forward self-similar solutions to the fractional Navier-Stokes equations with \(5 / 6 < \alpha \leq 1\) for arbitrarily large self-similar initial data by making use of the so called blow-up argument. Moreover, we prove that this solution is smooth in \(\mathbb{R}^3 \times(0, + \infty)\). In particular, when \(\alpha = 1\), we prove that the solution constructed by M. Korobkov and T.-P. Tsai [Anal. PDE 9, No. 8, 1811–1827 (2016; Zbl 1358.35094)] satisfies the decay estimate by establishing regularity of solution for the corresponding elliptic system, which implies this solution has the same properties as a solution which was constructed in [H. Jia and V. Šverák, Invent. Math. 196, No. 1, 233–265 (2014; Zbl 1301.35089)].

MSC:

35Q30 Navier-Stokes equations
35B40 Asymptotic behavior of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35R11 Fractional partial differential equations
35B44 Blow-up in context of PDEs
35C06 Self-similar solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Amick, Ch. J., Existence of solutions to the nonhomogeneous steady Navier-Stokes equations, Indiana Univ. Math. J., 33, 817-830 (1984) · Zbl 0563.35059
[2] Amirat, Y.; Bresch, D.; Lemoine, J.; Simon, J., Existence of semi-periodic solutions of steady Navier-Stokes equations in a half space with an exponential decay at infinity, Rend. Semin. Mat. Univ. Padova, 102, 341-365 (1999) · Zbl 0940.35158
[3] Bahouri, H.; Chemin, J-Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations, A Series of Comprehensive Studies in Mathematics, Grundlehren der Mathematischen Wissenschaften, vol. 343 (2011), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1227.35004
[4] Barraza, O. A., Self-similar solutions in weak \(L^p\)-spaces of the Navier-Stokes equations, Rev. Mat. Iberoam., 12, 411-439 (1996) · Zbl 0860.35092
[5] Biler, P.; Funaki, T.; Woyczynski, W. A., Fractal Burgers equations, J. Differential Equations, 148, 9-46 (1998) · Zbl 0911.35100
[6] Blumenthal, R. M.; Getoor, R. K., Some theorems on stable processes, Trans. Amer. Math. Soc., 95, 263-273 (1960) · Zbl 0107.12401
[7] Caffarelli, L.; Kohn, R. V.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., XXXV, 771-831 (1982) · Zbl 0509.35067
[8] Cannone, M.; Planchon, Y., Self-similar solutions for the Navier-Stokes equations in \(R^3\), Comm. Partial Differential Equations, 21, 179-193 (1996) · Zbl 0842.35075
[9] Cannone, M.; Meyer, Y.; Planchon, Y., Solutions auto-simlaires des equations de Navier-Stokes, (Seminaire X-EDP, Centre de Mathematiques (1994), Ecole Polytechnique) · Zbl 0882.35090
[10] G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, pp. 1-1009.; G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, pp. 1-1009. · Zbl 1245.35002
[11] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249 (2008), Springer: Springer New York · Zbl 1220.42001
[12] Grafakos, L.; Oh, S., The Kato-Ponce inequality, Comm. Partial Differential Equations, 39, 1128-1157 (2014) · Zbl 1301.42026
[13] Jia, H.; Šverák, V., Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent. Math., 196, 233-265 (2014) · Zbl 1301.35089
[14] Kiselev, A.; Nazarov, F.; Schterenberg, R., Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ., 5, 3, 211-240 (2008) · Zbl 1186.35020
[15] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 1, 22-35 (2001) · Zbl 0972.35084
[16] Korobkov, M.; Tsai, T. P., Forward self-similar solutions of the Navier-Stokes equations in the half space, Anal. PDE, 9, 1811-1827 (2016) · Zbl 1358.35094
[17] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Sobolev Spaces (2008), American Mathematical Society: American Mathematical Society Providence, RL · Zbl 1147.35001
[18] Landkof, N. S., Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180 (1972), Springer: Springer New York, translated from the Russian by A.P. Doohovskoy · Zbl 0253.31001
[19] Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, vol. 431 (2002), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL · Zbl 1034.35093
[20] Leray, J., Essai sur le mouvement d’un fluid visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05
[21] Lions, J. L.; Magenes, E., Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Grundlehren Math. Wiss., vol. 181 (1972), Springer: Springer New York · Zbl 0223.35039
[22] Miao, C. X.; Yuan, B. Q.; Zhang, B., Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal., 68, 461-484 (2008) · Zbl 1132.35047
[23] Nečas, J.; Råužička, M.; Šverák, V., On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math., 176, 283-294 (1996) · Zbl 0884.35115
[24] Oseen, C. W., Neuere Methoden und Ergebnisse in der Hydrodynamik (1927), Akademische Verlags-gesellschaft: Akademische Verlags-gesellschaft Leipzig · JFM 53.0773.02
[25] Resnick, S., Dynamical Problems in Nonlinear Advective Partial Differential Equations (1995), University of Chicago, Ph.D. Thesis
[26] Silvestre, L., Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60, 67-112 (2007) · Zbl 1141.49035
[27] Simon, J., Démonstration constructive d’un théorèm de G. de Rham, C. R. Acad. Sci. Paris, Sér. I, 316, 1167-1172 (1993) · Zbl 0778.35086
[28] Tang, L.; Yu, Y., Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations, Comm. Math. Phys., 334, 1455-1482 (2015) · Zbl 1309.35059
[29] Taniuchi, Y., Uniformly local \(L^p\) estimate for 2D vorticity equation and its application to Euler equations with initial vorticity in BMO, Comm. Math. Phys., 248, 169-186 (2004) · Zbl 1056.76009
[30] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1977), North-Holland: North-Holland Amsterdam · Zbl 0383.35057
[31] Tsai, T. P., On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch. Ration. Mech. Anal., 143, 29-51 (1998) · Zbl 0916.35084
[32] Woyczyński, W. A., Lévy Processes in the Physical Sciences, 241-266 (2001), Birkhäuser: Birkhäuser Boston, MA · Zbl 0982.60043
[33] Wu, J., Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys., 263, 803-831 (2005) · Zbl 1104.35037
[34] Zhang, X., Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Comm. Math. Phys., 311, 133-155 (2012) · Zbl 1251.35203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.