×

Local \(L^2\) theory of the fractional Navier-Stokes equations and the self-similar solution. (English) Zbl 1509.35185

Summary: This paper is concerned with two aspects of the fractional Navier-Stokes equation. First, we establish the local \(L^2\) theory of the hypo-dissipative Navier-Stokes system. More precisely, the existence of local in time as well as global in time local energy weak solutions to the hypo-dissipative Navier-Stokes system is proved. In particular, in order to construct a pressure with an explicit representation, some technical innovations are required due to the lack of known results on the local regularity of the non-local Stokes operator. Secondly, as an important application to the local \(L^2\) theory, we give a second construction of large self-similar solutions of the hypo-dissipative Navier-Stokes system along with the Leray-Schauder degree theory.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B40 Asymptotic behavior of solutions to PDEs
35B65 Smoothness and regularity of solutions to PDEs
35C06 Self-similar solutions to PDEs
35D30 Weak solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Aimar, H.; Beltritti, G.; Gómez, I., Improvement of Besov regularity for solutions of the fractional Laplacian, Constr Approx, 41, 219-229 (2015) · Zbl 1333.35319 · doi:10.1007/s00365-014-9256-0
[2] Barraza, O. A., Self-similar solutions in weak L^p-spaces of the Navier-Stokes equations, Rev Mat Iberoam, 12, 411-439 (1996) · Zbl 0860.35092 · doi:10.4171/RMI/202
[3] Bradshaw, Z.; Tsai, T-P, Global existence, regularity, and uniqueness of infinite energy solutions to the Navier-Stokes equations, Comm Partial Differential Equations, 45, 1168-1201 (2020) · Zbl 1448.35360 · doi:10.1080/03605302.2020.1761386
[4] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm Pure Appl Math, 35, 771-831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[5] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Comm Partial Differential Equations, 32, 1245-1260 (2007) · Zbl 1143.26002 · doi:10.1080/03605300600987306
[6] Calderón, C., Existence of weak solutions for the Navier-Stokes equations with initial data in L^p, Trans Amer Math Soc, 318, 179-200 (1990) · Zbl 0707.35118
[7] Cannone M, Meyer Y, Planchon F. Solutions auto-similaires des équations de Navier-Stokes. http://www.numdam.org/item/SEDP_1993-1994__A8_0.pdf, 1994 · Zbl 0882.35090
[8] Cannone, M.; Planchon, F., Self-similar solutions for the Navier-Stokes equations in ℝ^3, Comm Partial Differential Equations, 21, 179-193 (1996) · Zbl 0842.35075 · doi:10.1080/03605309608821179
[9] Cao, X.; Chen, Q.; Lai, B., Properties of the linear non-local Stokes operator and its application, Nonlinearity, 32, 2633-2666 (2019) · Zbl 1426.35176 · doi:10.1088/1361-6544/ab0b30
[10] Chae, D.; Wolf, J., On the Liouville type theorems for self-similar solutions to the Navier-Stokes equations, Arch Ration Mech Anal, 225, 549-572 (2017) · Zbl 1367.35104 · doi:10.1007/s00205-017-1110-7
[11] Chen, Z.; Song, R., Estimates on Green functions and Poisson kernels for symmetric stable processes, Math Ann, 312, 465-501 (1998) · Zbl 0918.60068 · doi:10.1007/s002080050232
[12] Colombo, M.; De Lellis, C.; De Rosa, L., Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations, Comm Math Phys, 362, 659-688 (2018) · Zbl 1402.35204 · doi:10.1007/s00220-018-3177-x
[13] Colombo, M.; De Lellis, C.; Massaccesi, A., The generalized Caffarelli-Kohn-Nirenberg theorem for the hyperdissipative Navier-Stokes system, Comm Pure Appl Math, 73, 609-663 (2020) · Zbl 1442.35298 · doi:10.1002/cpa.21865
[14] De Lellis, C.; Székelyhidi, L. Jr, Dissipative continuous Euler flows, Invent Math, 193, 377-407 (2013) · Zbl 1280.35103 · doi:10.1007/s00222-012-0429-9
[15] Giga, Y.; Miyakawa, T., Navier-Stokes flow in ℝ^3 with measures as initial vorticity and Morrey spaces, Comm Partial Differential Equations, 14, 577-618 (1989) · Zbl 0681.35072 · doi:10.1080/03605308908820621
[16] Giusti, E., Minimal Surfaces and Functions of Bounded Variation (1984), Boston: Birkhäuser, Boston · Zbl 0545.49018 · doi:10.1007/978-1-4684-9486-0
[17] Grafakos, L.; Oh, S., The Kato-Ponce inequality, Comm Partial Differential Equations, 39, 1128-1157 (2014) · Zbl 1301.42026 · doi:10.1080/03605302.2013.822885
[18] Jakubowski, T., The estimates for the Green function in Lipschitz domains for the symmetric stable processes, Probab Math Statist, 22, 419-441 (2002) · Zbl 1035.60046
[19] Jia, H.; Šverák, V., Minimal L^3-initial data for potential Navier-Stokes singularities, SIAM J Math Anal, 45, 1448-1459 (2013) · Zbl 1294.35065 · doi:10.1137/120880197
[20] Jia, H.; Šverák, V., Local-in-space estimates near initial time for weak solutions of the Navier-Stokes equations and forward self-similar solutions, Invent Math, 196, 233-265 (2014) · Zbl 1301.35089 · doi:10.1007/s00222-013-0468-x
[21] Kang, K.; Miura, H.; Tsai, T-P, Short time regularity of Navier-Stokes flows with locally L^3 initial data and applications, Int Math Res Not IMRN, 11, 8763-8805 (2021) · Zbl 1479.35618 · doi:10.1093/imrn/rnz327
[22] Kato, T., Strong solutions of the Navier-Stokes equation in Morrey spaces, Bull Braz Math Soc (NS), 22, 127-155 (1992) · Zbl 0781.35052 · doi:10.1007/BF01232939
[23] Katz, N.; Pavlović, N., A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom Funct Anal, 12, 355-379 (2002) · Zbl 0999.35069 · doi:10.1007/s00039-002-8250-z
[24] Kikuchi, N.; Seregin, G., Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying the local energy inequality, Nonlinear Equations and Spectral Theory, 141-164 (2007), Providence: Amer Math Soc, Providence · Zbl 1361.35130
[25] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv Math, 157, 22-35 (2001) · Zbl 0972.35084 · doi:10.1006/aima.2000.1937
[26] Korobkov, M.; Tsai, T-P, Forward self-similar solutions of the Navier-Stokes equations in the half space, Anal PDE, 9, 1811-1827 (2016) · Zbl 1358.35094 · doi:10.2140/apde.2016.9.1811
[27] Krylov, N. V., Lectures on Elliptic and Parabolic Equations in Sobolev Spaces (2008), Providence: Amer Math Soc, Providence · Zbl 1147.35001
[28] Kwon, H.; Tsai, T-P, Global Navier-Stokes flows for non-decaying initial data with slowly decaying oscillation, Comm Math Phys, 375, 1665-1715 (2020) · Zbl 1441.35185 · doi:10.1007/s00220-020-03695-3
[29] Lai, B. S.; Lin, J. Y.; Wang, C. Y., Forward self-similar solutions to the viscoelastic Navier-Stokes equation with damping, SIAM J Math Anal, 49, 501-529 (2017) · Zbl 1358.76012 · doi:10.1137/16M1060340
[30] Lai, B. S.; Miao, M. X.; Zheng, X. X., The forward self-similar solutions of the fractional Navier-Stokes equations, Adv Math, 352, 981-1043 (2019) · Zbl 1420.35192 · doi:10.1016/j.aim.2019.06.021
[31] Lai, B. S.; Miao, M. X.; Zheng, X. X., Global regularity of weak solutions to the generalized Leray equations and its applications, Trans Amer Math Soc, 374, 7449-7497 (2021) · Zbl 1479.35622 · doi:10.1090/tran/8455
[32] Lemarié-Rieusset, P. G., Solutions faibles d’énergie infinie pour les équations de Navier-Stokes dans ℝ^3, C R Acad Sci Paris Sér I Math, 328, 1133-1138 (1999) · Zbl 0930.35125 · doi:10.1016/S0764-4442(99)80427-3
[33] Lemarié-Rieusset, P. G., The Navier-Stokes Problem in the 21st Century (2016), Boca Raton: CRC Press, Boca Raton · Zbl 1342.76029 · doi:10.1201/b19556
[34] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math, 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[35] Li, J., Global existence of a uniformly local energy solution for the incompressible fractional Navier-Stokes equations, Colloq Math, 160, 7-40 (2020) · Zbl 1458.35302 · doi:10.4064/cm7997-10-2019
[36] Lions, J-L, Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod, Paris · Zbl 0189.40603
[37] Maekawa, Y.; Miura, H.; Prange, C., Local energy weak solutions for the Navier-Stokes equations in the half-space, Comm Math Phys, 367, 517-580 (2019) · Zbl 1421.35250 · doi:10.1007/s00220-019-03344-4
[38] Mawhin, J., Leray-Schauder degree: A half century of extensions and applications, Topol Methods Nonlinear Anal, 14, 195-228 (1999) · Zbl 0957.47045 · doi:10.12775/TMNA.1999.029
[39] Miao, C. X.; Yuan, B. Q.; Zhang, B., Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal, 68, 461-484 (2008) · Zbl 1132.35047 · doi:10.1016/j.na.2006.11.011
[40] Nečas, J.; Růžička, M.; Šverák, V., On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math, 176, 283-294 (1996) · Zbl 0884.35115 · doi:10.1007/BF02551584
[41] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton: Princeton University Press, Princeton · Zbl 0207.13501
[42] Tang, L.; Yu, Y., Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations, Comm Math Phys, 334, 1455-1482 (2015) · Zbl 1309.35059 · doi:10.1007/s00220-014-2149-z
[43] Temam, R., Navier-Stokes Equations: Theory and Numerical Analysis (1977), Amsterdam: North-Holland, Amsterdam · Zbl 0383.35057
[44] Tsai, T-P, On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates, Arch Ration Mech Anal, 143, 29-51 (1998) · Zbl 0916.35084 · doi:10.1007/s002050050099
[45] Tsai, T-P, Forward discrete self-similar solutions of the Navier-Stokes equations, Comm Math Phys, 328, 29-44 (2014) · Zbl 1293.35218 · doi:10.1007/s00220-014-1984-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.