×

Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations. (English) Zbl 1416.35183

Summary: We prove the ill-posedness for the Leray-Hopf weak solutions of the incompressible and ipodissipative Navier-Stokes equations, when the power of the diffusive term \((-\Delta)^\gamma\) is \(\gamma <1/3\). We construct infinitely many solutions, starting from the same initial datum, which belong to \(C^{1/3-}_{x,t}\) and strictly dissipate their energy in small time intervals. The proof exploits the “convex integration scheme” introduced by C. De Lellis and L. Székelyhidi jun. [Ann. Math. (2) 170, No. 3, 1417–1436 (2009; Zbl 1350.35146)] for the incompressible Euler equations, joining these ideas with new stability estimates for a class of non-local advection-diffusion equations and a local (in time) well-posedness result for the fractional Navier-Stokes system. Moreover, we show the existence of dissipative Hölder continuous solutions of Euler equations that can be obtained as a vanishing viscosity limit of Leray-Hopf weak solutions of suitable fractional Navier-Stokes equations.

MSC:

35Q30 Navier-Stokes equations
35R11 Fractional partial differential equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B35 Stability in context of PDEs

Citations:

Zbl 1350.35146

References:

[1] Colombo, M., De Lellis, C., De Rosa, L. (2017). Ill-posedness of Leray solutions for the hypodissipative Navier-Stokes equations. Commun. Math. Phys. 362:659-688. DOI: . · Zbl 1402.35204
[2] De Lellis, C.; Székelyhidi, L. Jr., The Euler equations as a differential inclusion, Ann. Math, 170, 3, 1417-1436 (2009) · Zbl 1350.35146 · doi:10.4007/annals.2009.170.1417
[3] Buckmaster, T., Lellis, C. D., Székelyhidi, L. Jr.Vicol, V. (2018). Onsager’s conjecture for admissible weak solutions. Commun. Pur. Appl. Math. DOI: . · Zbl 1480.35317
[4] Isett, P., A proof of Onsager’s conjecture (2018) · Zbl 1416.35194 · doi:10.4007/annals.2018.188.3.4
[5] Buckmaster, T.; Vicol, V., Nonuniqueness of weak solutions to the Navier-Stokes equation, Preprint · Zbl 1412.35215
[6] Buckmaster, T.; Shkoller, S.; Vicol, V., Nonuniqueness of weak solutions to the SQG equation, Preprint (2016)
[7] Roncal, L.; Stinga, P. R., Fractional Laplacian on the torus, Commun. Contemp. Math, 18, 3, 1550026-1550033 (2016) · Zbl 1383.35246 · doi:10.1142/S0219199715500339
[8] Constantin, P.; Tarfulea, A.; Vicol, V., Long time dynamics of forced critical SQG, Commun. Math. Phys, 335, 1, 93 (2015) · Zbl 1316.35238 · doi:10.1007/s00220-014-2129-3
[9] Majda, A. J.; Bertozzi, A. L., Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 0983.76001
[10] De Lellis, C.; Székelyhidi, L. Jr., Dissipative continuous Euler flows, Invent. Math, 193, 2, 377-407 (2013) · Zbl 1280.35103 · doi:10.1007/s00222-012-0429-9
[11] Daneri, S.; Székelyhidi, L., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Rational Mech. Anal, 224, 2, 471-514 (2017) · Zbl 1372.35221 · doi:10.1007/s00205-017-1081-8
[12] Constantin, P.; Weinan, E.; Titi, E. S., Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Commun. Math. Phys, 165, 1, 207-209 (1994) · Zbl 0818.35085 · doi:10.1007/BF02099744
[13] Conti, S.; Lellis, C. D.; Székelyhidi, L. Jr., Nonlinear Partial Differential Equations, h-principle and rigidity for \(####\) isometric embeddings, 83-116 (2012), Springer · Zbl 1255.53038
[14] Caldern, A. P.; Zygmund, A., Singular integrals and periodic functions, Studia Math, 14, 249-271 (1954) · Zbl 0064.10401 · doi:10.4064/sm-14-2-249-271
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.