×

A regularized model for wetting/dewetting problems: positivity and asymptotic analysis. (English) Zbl 07828068

Summary: We consider a general regularized variational model for simulating wetting/dewetting phenomena arising from solids or fluids. The regularized model leads to the appearance of a precursor layer which covers the bare substrate, with the precursor height depending on the regularization parameter \(\varepsilon \). This model enjoys lots of advantages in analysis and simulations. With the help of the precursor layer, the spatial domain is naturally extended to a larger fixed one in the regularized model, which leads to both analytical and computational eases. There is no need to explicitly track the contact line motion, and difficulties arising from free boundary problems can be avoided. In addition, topological change events can be automatically captured. Under some mild and physically meaningful conditions, we show the positivity-preserving property of the minimizers of the regularized model. By using formal asymptotic analysis and \(\Gamma \)-limit analysis, we investigate the convergence relations between the regularized model and the classical sharp-interface model. Finally, numerical results are provided to validate our theoretical analysis, as well as the accuracy and efficiency of the regularized model.

MSC:

76T30 Three or more component flows
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76M30 Variational methods applied to problems in fluid mechanics
76A20 Thin fluid films
35Q35 PDEs in connection with fluid mechanics

References:

[1] Alikakos, ND; Bates, PW; Chen, X., Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Ration. Mech. Anal., 128, 165-205, 1994 · Zbl 0828.35105 · doi:10.1007/BF00375025
[2] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems (Courier Corporation, 2000) · Zbl 0957.49001
[3] Andrei, N., An acceleration of gradient descent algorithm with backtracking for unconstrained optimization, Numer. Algorithms, 42, 63-73, 2006 · Zbl 1101.65058 · doi:10.1007/s11075-006-9023-9
[4] Andreotti, B.; Snoeijer, JH, Statics and dynamics of soft wetting, Annu. Rev. Fluid Mech., 52, 285-308, 2020 · Zbl 1439.76172 · doi:10.1146/annurev-fluid-010719-060147
[5] Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Gross, S.; Maragno, C.; Tondello, E., Recent trends on nanocomposites based on Cu, Ag and Au clusters: a closer look, Coord. Chem. Rev., 250, 1294-1314, 2006 · doi:10.1016/j.ccr.2005.12.003
[6] Bao, W.; Jiang, W.; Srolovitz, DJ; Wang, Y., Stable equilibria of anisotropic particles on substrates: a generalized winterbottom construction, SIAM J. Appl. Math., 77, 2093-2118, 2017 · Zbl 1386.74059 · doi:10.1137/16M1091599
[7] Bao, W.; Jiang, W.; Wang, Y.; Zhao, Q., A parametric finite element method for solid-state dewetting problems with anisotropic surface energies, J. Comput. Phys., 330, 380-400, 2017 · Zbl 1378.76043 · doi:10.1016/j.jcp.2016.11.015
[8] Bildhauer, M.: Convex variational problems: linear, nearly linear and anisotropic growth conditions (Springer, 2003) · Zbl 1033.49001
[9] Boccardo, F.; Rovaris, F.; Tripathi, A.; Montalenti, F.; Pierre-Louis, O., Stress-induced acceleration and ordering in solid-state Dewetting, Phys. Rev. Lett., 128, 2022 · doi:10.1103/PhysRevLett.128.026101
[10] Bonn, D.; Eggers, J.; Indekeu, J.; Meunier, J.; Rolley, E., Wetting and spreading, Rev. Mod. Phys., 81, 739, 2009 · doi:10.1103/RevModPhys.81.739
[11] Bradley, AT; Box, F.; Hewitt, IJ; Vella, D., Wettability-independent droplet transport by Bendotaxis, Phys. Rev. Lett., 122, 2019 · doi:10.1103/PhysRevLett.122.074503
[12] Bretin, E.; Masnou, S.; Sengers, A.; Terii, G., Approximation of surface diffusion flow: a second-order variational Cahn-Hilliard model with degenerate mobilities, Math. Models Methods Appl. Sci., 32, 793-829, 2022 · Zbl 1492.74124 · doi:10.1142/S0218202522500178
[13] Cahn, JW; Elliott, CM; Novick-Cohen, A., The Cahn-Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math., 7, 287-301, 1996 · Zbl 0861.35039 · doi:10.1017/S0956792500002369
[14] Cahn, JW; Taylor, JE, Surface motion by surface diffusion, Acta Metall. Mater., 42, 1045-1063, 1994 · doi:10.1016/0956-7151(94)90123-6
[15] Chen, X.; Hilhorst, D.; Logak, E., Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, Interf. Free Bound., 12, 527-549, 2011 · Zbl 1219.35018 · doi:10.4171/ifb/244
[16] Chen, X.; Wang, X.; Xu, X., Analysis of the Cahn-Hilliard equation with a relaxation boundary condition modeling the contact angle dynamics, Arch. Ration. Mech. Anal., 213, 1-24, 2014 · Zbl 1293.35235 · doi:10.1007/s00205-013-0713-x
[17] Chiu, C-H; Gao, H., A numerical study of stress controlled surface diffusion during epitaxial film growth, MRS Online Proceed. Library, 356, 33-44, 1995 · doi:10.1557/PROC-356-33
[18] Dai, S.; Du, Q., Coarsening mechanism for systems governed by the Cahn-Hilliard equation with degenerate diffusion mobility, Multiscale Model. Simul., 12, 1870-1889, 2014 · Zbl 1327.35150 · doi:10.1137/140952387
[19] Danielson, D.; Sparacin, D.; Michel, J.; Kimerling, L., Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration, J. Appl. Phys., 100, 530, 2006 · doi:10.1063/1.2357345
[20] Davoli, E.; Piovano, P., Analytical validation of the Young-Dupré law for epitaxially-strained thin films, Math. Mod. Meth. Appl. Sci., 29, 2183-2223, 2019 · Zbl 1427.74115 · doi:10.1142/S0218202519500441
[21] Davoli, E.; Piovano, P., Derivation of a heteroepitaxial thin-film model, Interface. Free Bound., 22, 1-26, 2020 · Zbl 1437.35269 · doi:10.4171/ifb/435
[22] De Gennes, P-G, Wetting: statics and dynamics, Rev. Mod. Phys., 57, 827-863, 1985 · doi:10.1103/RevModPhys.57.827
[23] De Philippis, G.; Maggi, F., Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law, Arch. Ration. Mech. An., 216, 473-568, 2015 · Zbl 1321.35158 · doi:10.1007/s00205-014-0813-2
[24] Demengel, F.; Temam, R., Convex functions of a measure and applications, Indiana U. Math. J., 33, 673-709, 1984 · Zbl 0581.46036 · doi:10.1512/iumj.1984.33.33036
[25] Du, P.; Khenner, M.; Wong, H., A tangent-plane marker-particle method for the computation of three-dimensional solid surfaces evolving by surface diffusion on a substrate, J. Comput. Phys., 229, 813-827, 2010 · Zbl 1253.74057 · doi:10.1016/j.jcp.2009.10.013
[26] Dupré, A., Dupré, P.: Théorie mécanique de la chaleur (Gauthier-Villars, 1869)
[27] Dziwnik, M.; Munch, A.; Wagner, B., An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit, Nonlinearity, 30, 1465-1496, 2017 · Zbl 1404.76025 · doi:10.1088/1361-6544/aa5e5d
[28] Evans, L. C., Garzepy, R. F.: Measure theory and fine properties of functions (Routledge, 2018)
[29] Fonseca, I.; Fusco, N.; Leoni, G.; Morini, M., Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results, Arch. Ration. Mech. Anal., 186, 477-537, 2007 · Zbl 1126.74029 · doi:10.1007/s00205-007-0082-4
[30] Fonseca, I.; Leoni, G., On lower semicontinuity and relaxation, Proc. R. Soc. Edinburgh, 131, 519-565, 2001 · Zbl 1003.49015 · doi:10.1017/S0308210501000245
[31] Fonseca, I.; Müller, S., A uniqueness proof for the Wulff theorem, Proc. R. Soc. Edinburgh, 119, 125-136, 1991 · Zbl 0752.49019 · doi:10.1017/S0308210500028365
[32] Garcke, H.; Knopf, P.; Nürnberg, R.; Zhao, Q., A diffuse-interface approach for solid-state dewetting with anisotropic surface energies, J. Nonlinear Sci., 33, 34, 2023 · Zbl 1510.35163 · doi:10.1007/s00332-023-09889-y
[33] Gibbs, JW, On the equilibrium of heterogeneous substances, Trans. Connecticut Acad. Arts Sci., 3, 104-248, 1878 · JFM 10.0759.01
[34] Giusti, E.: Minimal surfaces and functions of bounded variation, vol. 80 (Springer, 1984) · Zbl 0545.49018
[35] Huang, Q.; Jiang, W.; Yang, JZ, An efficient and unconditionally energy stable scheme for simulating solid-state dewetting of thin films with isotropic surface energy, Commun, Comput. Phys., 26, 1444-1470, 2019 · Zbl 1490.74070 · doi:10.4208/cicp.2019.js60.07
[36] Huang, W., Jiang, W.: A new regularized sharp-interface model for simulating solid-state dewetting problems, preprint
[37] Jiang, W.; Bao, W.; Thompson, C.; Srolovitz, D., Phase field approach for simulating solid-state dewetting problems, Acta Mater., 60, 5578-5592, 2012 · doi:10.1016/j.actamat.2012.07.002
[38] Jiang, W.; Wang, Y.; Zhao, Q.; Srolovitz, DJ; Bao, W., Solid-state dewetting and island morphologies in strongly anisotropic materials, Scripta Mater., 115, 123-127, 2016 · doi:10.1016/j.scriptamat.2016.01.018
[39] Jiang, W.; Zhao, Q.; Bao, W., Sharp-interface model for simulating solid-state dewetting in three dimensions, SIAM J. Appl. Math., 80, 1654-1677, 2020 · Zbl 1440.74153 · doi:10.1137/19M1251345
[40] Kim, GH; Thompson, CV, Effect of surface energy anisotropy on Rayleigh-like solid-state dewetting and nanowire stability, Acta Mater., 84, 190-201, 2015 · doi:10.1016/j.actamat.2014.10.028
[41] Lee, AA; Münch, A.; Süli, E., Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Appl. Math., 76, 433-456, 2016 · Zbl 1343.35129 · doi:10.1137/140960189
[42] Leroy, F.; Cheynis, F.; Almadori, Y.; Curiotto, S.; Trautmann, M.; Barbé, J.; Müller, P., How to control solid state dewetting: a short review, Surf. Sci. Rep., 71, 391-409, 2016 · doi:10.1016/j.surfrep.2016.03.002
[43] Marchand, A.; Das, S.; Snoeijer, JH; Andreotti, B., Contact angles on a soft solid: from young’s law to Neumann’s law, Phys. Rev. Lett., 109, 2012 · doi:10.1103/PhysRevLett.109.236101
[44] Naffouti, M., Backofen, R., Salvalaglio, M., Bottein, T., Lodari, M., Voigt, A., David, T., Benkouider, A., Fraj, I., Favre, L., et al.: Complex dewetting scenarios of ultrathin silicon films for large-scale nanoarchitectures, Sci. Adv.3, eaao1472 (2017)
[45] Peschka, D.; Haefner, S.; Marquant, L.; Jacobs, K.; Münch, A.; Wagner, B., Signatures of slip in dewetting polymer films, PNAS, 116, 9275-9284, 2019 · doi:10.1073/pnas.1820487116
[46] Piovano, P.; Velčić, I., Microscopical justification of solid-state wetting and dewetting, J. Nonlinear Sci., 32, 1-55, 2022 · Zbl 1489.82023 · doi:10.1007/s00332-022-09783-z
[47] Qian, T.; Wang, X.; Sheng, P., A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564, 333-360, 2006 · Zbl 1178.76296 · doi:10.1017/S0022112006001935
[48] Randolph, S.; Fowlkes, J.; Melechko, A.; Klein, K.; Meyer, H.; Simpson, M.; Rack, P., Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth, Nanotechnology, 18, 2007 · doi:10.1088/0957-4484/18/46/465304
[49] Schmidt, V.; Wittemann, J.; Senz, S.; Gosele, U., Silicon nanowires: a review on aspects of their growth and their electrical properties, Adv. Mater., 21, 2681-2702, 2009 · doi:10.1002/adma.200803754
[50] Spencer, BJ, Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski-Krastanow Islands, Phys. Rev. B, 59, 2011, 1999 · doi:10.1103/PhysRevB.59.2011
[51] Style, RW; Boltyanskiy, R.; Che, Y.; Wettlaufer, JS; Wilen, LA; Dufresne, ER, Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses, Phys. Rev. Lett., 110, 2013 · doi:10.1103/PhysRevLett.110.066103
[52] Taylor, J.: Existence and structure of solutions to a class of nonelliptic variational problems. In Symposia Mathematica, vol. 14, pp. 499-508 (1974) · Zbl 0317.49053
[53] Thompson, C., Solid-state dewetting of thin films, Annu. Rev. Mater. Res., 42, 399-434, 2012 · doi:10.1146/annurev-matsci-070511-155048
[54] Tripathi, AK; Pierre-Louis, O., Triple-line kinetics for solid films, Phys. Rev. E, 97, 2018 · doi:10.1103/PhysRevE.97.022801
[55] Tripathi, AK; Pierre-Louis, O., Disjoining-pressure-induced acceleration of mass shedding in solid-state dewetting, Phys. Rev. E, 101, 2020 · doi:10.1103/PhysRevE.101.042802
[56] Turco, A.; Alouges, F.; DeSimone, A., Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model, ESAIM Math. Model. Numer. Anal., 43, 1027-1044, 2009 · Zbl 1375.76052 · doi:10.1051/m2an/2009016
[57] Wang, Y.; Jiang, W.; Bao, W.; Srolovitz, DJ, Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies, Phys. Rev. B, 91, 2015 · doi:10.1103/PhysRevB.91.045303
[58] Winterbottom, W., Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metall., 15, 303-310, 1967 · doi:10.1016/0001-6160(67)90206-4
[59] Wong, H.; Voorhees, P.; Miksis, M.; Davis, S., Periodic mass shedding of a retracting solid film step, Acta Mater., 48, 1719-1728, 2000 · doi:10.1016/S1359-6454(00)00016-1
[60] Wu, Q.; Wong, H., A slope-dependent disjoining pressure for non-zero contact angles, J. Fluid Mech., 506, 157-185, 2004 · Zbl 1073.76013 · doi:10.1017/S0022112004008420
[61] Wulff, G., Zur frage der geschwindigkeit des wachstums und derauflösung der krystallflächen, Z. Kristallogr., 34, 449-530, 1901 · doi:10.1524/zkri.1901.34.1.449
[62] Xu, X.; Wang, X., Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71, 1753-1779, 2011 · Zbl 1323.35153 · doi:10.1137/110829593
[63] Young, T., An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95, 65-87, 1805 · doi:10.1098/rstl.1805.0005
[64] Zhang, Z.; Qian, T., Variational approach to droplet transport via bendotaxis: thin film dynamics and model reduction, Phys. Rev. Fluids, 7, 2022 · doi:10.1103/PhysRevFluids.7.044002
[65] Zhang, Z.; Yao, J.; Ren, W., Static interface profiles for contact lines on an elastic membrane with the willmore energy, Phys. Rev. E, 102, 2020 · doi:10.1103/PhysRevE.102.062803
[66] Zhao, Q.; Jiang, W.; Bao, W., A parametric finite element method for solid-state dewetting problems in three dimensions, SIAM J. Sci. Comput., 42, B327-B352, 2020 · Zbl 1430.74056 · doi:10.1137/19M1281666
[67] Zhong, H.: Analysis and simulations of two-phase fluid on patterned surfaces, Ph.D. thesis, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.